Application of chaos theory in identification of two-phase flow patterns and transitions in a small, horizontal, rectangular channel

PDF Version Also Available for Download.

Description

Various measurement tools of chaos theory were applied to analyze two-phase pressure signals with the objective to identify and interpret flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic in nature. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identification of certain two-phase flow patterns and transitions.

Physical Description

29 p.

Creation Information

Cai, Y.; Wambsganss, M.W. & Jendrzejczyk, J.A. February 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 419 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Various measurement tools of chaos theory were applied to analyze two-phase pressure signals with the objective to identify and interpret flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic in nature. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identification of certain two-phase flow patterns and transitions.

Physical Description

29 p.

Notes

OSTI as DE96007511

Source

  • Other Information: PBD: [1996]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 14, 2015, 4:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 419

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cai, Y.; Wambsganss, M.W. & Jendrzejczyk, J.A. Application of chaos theory in identification of two-phase flow patterns and transitions in a small, horizontal, rectangular channel, report, February 1, 1996; Illinois. (https://digital.library.unt.edu/ark:/67531/metadc665264/: accessed May 29, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen