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Abstract 

Various measurement tools of chaos theory were applied to analyze two- 

phase pressure signals with the objective to identify and interpret flow pattern 
transitions for two-phase flows in a small, horizontal rectangular channel. These 
measurement tools included power spectral density function, autocorrelation 

function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal 
dimensions. It was demonstrated that the randomlike pressure fluctuations 

characteristic of two-phase flow in small rectangular channels are chaotic in nature. 

As such, they are governed by a high-order deterministic system. The correlation 

dimension is potentially a new approach for identification of certain two-phase 
flow patterns and transitions. 

1. Introduction 

This study presents an application of chaos theory in identification of two- 
phase flow patterns and transitions in a small, horizontal, rectangular channel. The 

data analyzed in this study is from previous experiments (Wambsganss et al., 1991; 
Wambsganss et al., 1992a and 1992b). In the experiments, horizontal two-phase 

flow was studied in a small cross-sectional-area (19.05 x 3.18 mm) rectangular 
channel. Adiabatic flows of aidwater mixtures were tested over a large mass flux 
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range (50 - 2000 kg/m%). The full quality covered the range experimentally 
achievable. The two-phase flow patterns and transitions had been identified by 

dynamic pressure measurements, together with visual observations and 

supplemented with photographic data, and flow pattern maps were developed 

(Wambsganss et al., 1991; Warnbsganss et al., 1992a and 1992b). 
Usually, the flow pattern maps of two-phase flows are based on visual 

identification of phase distribution (Clarke and Blundelll989; Brauner and Maron, 

1992; Galbiati and Andreini, 1992; Koizumi, 1992 and Hibiki et al., 1992). While 
visual flow pattern identification may be adequate for some cases, for many 

situations these methods are inapplicable or too subjective. Several other methods 

have been developed to more objectively identify and interpret flow pattern and 
transitions of two phase flow, such as pressure/time signals (Weisman et al., 1979), 

RMS of pressurehime series and friction pressure gradients (Wambsganss et al., 
1991; Wambsganss et al., 1992a and 1992b), the power spectral density function 
(PSD), probability density function (PDF) (Hubbard and Dukler, 1966; Matsui, 

1984 and 1986; Tutu, 1982 and 1984; Vince and Lahey, 1982). These studies have 

all contributed to understanding of flow patterns and transitions of two-phase 

flows, but there is no accepted method to objectively distinguish flow patterns. 

The purpose of this study is to apply the chaos theory on experimental data 
of dynamic pressure-to-time signals of two-phase flows in an attempt to identify 
and interpret flow pattern transitions. This new approach may present a promising 
way in identification of flow patterns. 

Chaotic oscillations are the emergence of randomlike motions from 
completely deterministic systems. Such motions had been known in fluid 

mechanics, but they have only recently been observed in low-order mechanical and 

electrical systems. The recognition that chaotic vibrations can arise in low-order, 

nonlinear deterministic systems raises the hope of understanding the source of 
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randomlike noise and being able to do something about it. The new discoveries in 

nonlinear dynamics bring with them new concepts and tools for detecting chaotic 

vibrations in physical systems and for quantifying this "deterministic noise" with 
new measures such as fractal dimensions and Lyapunov exponents (Moon, 1987). 

Two-phase flows and their nonlinear dynamics are far more complicated 
than other physical systems. Only a few reports with application of chaos theory 

can be found in literature (Lahey, 1991). Some theoretical developments and 

"computer experiments" in chaotic dynamics of multi-phase flows have been 

investigated recently (Doming 1989a and 1989b; Lahey et al., 1989; Rizwan-uddin 

and Dorning, 1986; Rizwan-uddin et al., 1988; Rizwan-uddin, 1989). Some 
experimental investigations of two-phase (gas-solid) flow were conducted, and 
while the two-phase flow was believed to be deterministic chaos, it could not be 

characterized with a low-dimensional strange attractor (Tam and Davine, 1989 and 

1992). Asymptotic power spectrum analysis and fractal dimension estimation have 
been employed for characterizing chaotic behavior of two-phase flows in fluidized 

beds (Ding and Tam, 1993). The power spectral density function, probability 

density function, and correlation dimension calculations are used by Franca et al. 
(1991) in an attempt to identify two-phase flow regimes in a 19 f~l~lz i.d. Plexiglas 

pipe. 

In this study, time history data of dynamic pressure pl from previous 
experiments (Wambsganss et al., 1991; Wambsganss et al., 1992 a and 1992b) 

were processed with various measuring tools, such as power spectral density 
(PSD), autocorrelation function, pseudo-phase-plane trajectory, Lyapunov 
exponents, and fractal dimensions. It was demonstrated that the randomlike 

pressure fluctuations characteristic of two-phase flow in small rectangular channels 
are chaotic in nature. As such, they are governed by a high-order deterministic 
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system. The correlation dimension is potentially a new approach for identification 

of certain two-phase flow patterns and transitions. 

2. Experiment 
Experiments of two-phase flow in a small, horizontal, rectangular channel 

were conducted several years ago (Wambsganss 1990,1991,1992a and 1992b). 
The flow apparatus (illustrated schematically in Fig. 1) is designed to allow 

adiabatic flow experiments with airfiquid mixtures in channels of small cross- 

sectional area. Air is supplied from a compressed air storage t k k  and flows 
through a pressure regulator and preselected rotameter to an airfiquid mixer. 

Laboratory water was used as the liquid in the experiments. The water flows 
through a control valve and preselected rotameter to the mixer, where air is 

injected into the liquid stream through a porous medium in opposing walls of the 
flow channel. The two-phase mixture then flows through the transparent channel. 
The mixture exiting from the channel flows through an expansion to a drain. A 
vane-type dry gas meter was utilized to calibrate the gas rotameters, and a 

weighing-technique-with-stop-watch was used to calibrate the liquid rotameters. 

The estimated uncertainty in flow rate measurement is +3%. The flow channel is 
rectangular, 1.14 m in length, with cross-sectional dimensions of 19.05 x 3.18 ~ll~ll 

(aspect ratio of 6). (The aspect ratio is defined as the ratio of the height of the 
vertical side of the channel to the width of the horizontal side.) 

The measured dependent variable is pressure. Pressure taps are spaced at 
intervals of 114 mm along the entire length of the channel and are located at the 
center of the long (vertical) side. Both differential pressure, over a specified 

channel length, and dynamic pressures, at two locations, are measured. 

Differential pressure is measured with a strain-gauge-type transducer (Viatran 

Model 209), and dynamic pressure is measured with piezoresistive-type 
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transducers (Endevco Model 85 1OB-50). The pressure transducers were calibrated 

against a known standard. Relative to the exit of the mixer, the pressure taps used 

with the dynamic-pressure-measuring transducers, p1 and pz, are located at L/Dh 

equal to 79 and 142, respectively. The channel length over which the differential 

pressure measurement is made corresponds to an L/Dh ratio of 132. The estimated 

uncertainty in pressure measurements is 35%. 

The test procedure consisted of establishing total mass flux G and a mass 

quality x in the test section. As overall test channel pressure drop allowed, test 

were performed over a range of quality (typically lo4 to 1) for each mass flux used 
(50 to 2000 kg/m2s). At steady state, visual and photographic observations were 

made and pressures were measured. Multiple photographs were taken and pressure 
measurements were recorded and averaged on a computer-controlled data 
acquisition system. 

From experimental results, typical pressure/time history, RMS pressure and 

frictional pressure gradient data in the form of two-phase frictional multipliers 

plotted as a function of both mass quality x and Martinelli parameter X, together 

with visual observations and supplemented with photographic data, were 

summarized in previous work (Warnbsganss 1990, 199 1, 1992a and 1992b). Such 

results were used to identify two-phase flow patterns and transitions and to develop 
flow pattern maps for two-phase flow in small, horizontal, rectangular channel. 

3. Chaotical Measurements 

In this study, a group of measured data of dynamic pressure p1 (see Fig. 1) in 
flow regimes of plug, slug and annular flows, with a fixed mass flux G = 500 
kg/m2s, were investigated by various chaotical measurement tools. Typical 

pressure/time histories, exhibiting different characteristics corresponding to the 

different flow patterns (plug, slug and annular flows), are shown in Fig. 2. It is 
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demonstrated that different flow patterns of two-phase flows in the small channel 
always exhibit a randomlike pressure fluctuation characteristics, even though plug 

and slug flow are characterized by low-frequency and annular flow is characterized 

by high-frequency. 
Various measurement tools of chaos theory were applied in this study to 

analyze dynamic pressure signals of two-phase flows with the objective to identify 

and interpret flow pattern transitions. These measurement tools included power 
spectral density function, autocorrelation function, pseudo-phase-plane trajectory, 

Lyapunov exponents, and fractal dimensions. 

The experimental pressure data were obtained from original recorded tapes 

at sampling rate of 1000 digitizations per second with Macintosh machine. The 
data length of 65,000 points for each test case were utilized for calculations of 
various chaotic measurements, especially, for algorithm of computing the fractal 
dimension. 

3.1 Power Spectral Density 
Power spectral density (PSD) makes it possible to distinguish between 

periodic and chaotic responses. It is known that for a chaotic motion, the power 

spectrum is a continuous process. 

The PSD analysis can give a first indication of the dimensional behavior of a 
time series. The PSD analysis suggested by Gorman and Robbins (1992) can 

reveal information complementary to a conventional dimensional analysis or an 
estimation of Lyapunov exponents. Therefore, this approach should be considered 
before performing an expensive and time consuming dimensional analysis, like the 
correlation integral or the "nearest neighbor" approaches. 

The characteristics of the power spectrum of chaotic-dynamic systems in the 
low- to moderate-frequency regimes are reflected as a broad-band structure without 
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dominant peak structures. However, at the high-frequency limit of the asymptotic 

regimes, power spectra decay toward a noise level. That noise level may be 
determined from instrumentation limit for the data originating from measurements. 

The manner in which the spectrum decays toward the noise level contains useful 
information on the underlying dynamics. Some researches have suggested that the 

asymptotic analysis of power spectra is very useful in distinguishing between high- 
and low- to-moderate dimensional chaos (Ding and Tam, 1993). 

The PSD of plug, slug and annular flows in the small channel are shown in 

Fig. 3 on semi-log scale. All of flow regimes exhibit a broad band of frequencies, 

which is a characteristic of chaotic behavior. At the high-frequency range for all of 

flow regimes (see Fig. 3), the power spectra show a clear power-law falloff by 

visual inspection. As suggested by Sigeti and Horsthemke (1987), the power-law 
falloff of the power spectrum should indicate high-dimensional chaos rather than a 
stochastic process since the data were generated from a deterministic system. 

Therefore, above analysis of the PSD for two-phase flows in the small 
channel indeed indicates the existence of high dimensional chaotic behavior, and, 

as we will see later the high dimensional attractors from correlation integral 
estimations. However, it is not possible to distinguish the flow patterns and 

transitions of two-phase flows from the analysis of power spectrum. 

3.2 Autocorrelation Function 

Autocorrelation function is another signal processing tool used to identify 
chaotic motions. When a signal is chaotic, information about its past origins is 
lost. This means that the signal is only correlated with its recent past. 

The autocorrelation functions of the plug, slug and annular flows are shown 

in Fig. 4. The autocorrelation functions for plug, slug and annular flows have a 
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peak at origin delay time z = 0, and drop off rapidly with time, reflecting chaotic 

behavior. 

It can be observed from Fig. 4 that the plug, slug and annular flow have 
different periodic oscillations along the time delay axis with the amplitude values 

of autocorrelation functions around zero. However, with limited analysis, we can 

not claim that those differences can be used to identify flow patterns. 

The importance and contribution of calculating the autocorrelation functions 
before we performing other chaotic measurements is not only that the 

autocorrelation function has provided a useful tool to distinguish chaotic behavior 

but also it can provide an optimum choice of time delay z for other chaotic 

measurements. To estimate the attractor dimension, it is necessary to construct the 

phase space. The phase space may be reconstructed by using the time-delay 
embedding method; while the calculated values of the correlation dimension and 
Lyapunov exponents from reconstructed phase space are very sensitive to the time 

delay Z. Our experience has indicated that it is a very useful and practical approach 

by choosing an optimum time delay value from the calculations of autocorrelation 

functions. As from Fig. 4, the optimum time delay is estimated to be the smallest 

value of ‘G at which the first minimum in the autocorrelation function occurs, which 
is also considered to be most independent. This is the time delay used in 
subsequent chaotic measurements. 

3.3 Pseudo-Phase-Planes 
To obtain fractal dimension of strange attractor, many methods assume that 

one knows the dimension of the phase space wherein the attractor lies, or one has 

the ability to measure all the state variable. However, in our experiments, the time 

history of only one state variable is available, i.e., dynamic pressure pl(t). Also, 

the number of degrees of freedom, or minimum number of significant modes 
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contributing to the chaotic dynamics of two-phase flows, are not known a priori. 
In this case, pseudo-phase-space (embedding space) trajectories of the motion, or 

strange attractor, can be reconstructed using the time-delay embedding method 

(Packard et al., 1980). Given a scalar time series, one can reconstruct D- 
dimensional vectors in the following form: 

where D is the embedding dimension (the minimum dimension of the subspace), 
and T is the time delay. This reconstructed geometrical structure has the same 
dimensional characteristics, for example, the correlation dimension of the attractor 
generated from the dynamics underlying the original scalar time series. 

Figure 5 presents pseudo-phase-plane plots of the measured dynamic 

pressure for plug, slug and annular flows, respectively. It is obvious from these 
three flow patterns that the pseudo-phase-plane plots indeed indicate chaotic 
behavior. However, the difference of pseudo-phase-plane signatures among the 

three flow patterns is not sufficiently clear to be used for distinguishing flow 

patterns as suggested by Franca et al. (1991). 

3.4 Lyapunov Exponents 

Chaos in dynamics implies a sensitivity of the outcome of a dynamical 
process to changes in initial conditions. If one imagines a set of initial conditions 
within a sphere or radius E in phase space, then chaotic motion trajectories, 
originating in the sphere, will map the sphere into an ellipsoid whose major axis 
grows as d = E eht, where h > 0 is know as a Lyapunov exponent. Lyapunov 

exponents are the average exponential rates of divergence or convergence of 
nearby orbits in phase space (Moon, 1987). 
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Lyapunov exponents have been shown to be the most useful dynamic 
diagnostic tool in determining chaotic systems quantitatively. 

A number of experimenters in chaotic dynamics have developed algorithms 
to calculate the Lyapunov exponent. For regular motions h I 0; but for chaotic 
motion h > 0. Thus, the sign of h is a criterion for chaos. Any system containing 

at least one positive Lyapunov exponent is defined as chaotic. 

We used the algorithms proposed by Wolf et al. (1985) to determine the 
Lyapunov exponents from a time series of absolute pressure for different flow 

patterns. Figure 6 shows the results of Lyapunov exponents for plug, slug and 

annular flows. Lyapunov exponents are positive, which shows that the attractor 

has an expanding direction, constituting convincing evidence for chaotic behavior 
of plug, slug and annular flows. The result provides further evidence of chaotic 
behavior in two-phase flows in small channels. 

3.5 Correlation Dimensions 
Another approach for predicting chaotic motion quantitatively is the use of 

fractal dimensions. A noninteger fractal dimension of the orbit in a phase space 

implies the existence of a strange attractor. The basic idea is to characterize the 
"strangeness" of the chaotic attractor. While practical use of the fractal dimensions 
in measuring and characterizing chaotic motions has yet to be fully established, 
various definitions have been developed, including the capacity dimension, 

correlation dimension, and information dimension. 

Of the several methods available to estimate the attractor dimensions, we 
used measurement of the correlation dimension, which has been used successfully 
by many investigators in other fields (Moon, 1985). In particular, we used 

Grassberger and Proccacia's method (1 983) to calculate the correlation dimensions 
of measured pressure data of two-phase flow. 
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The correlation function is defined as: C(r) = lim N-, oo (1/N2) (number of 

pairs of points on the attractor whose distance is less than r). Here, N is the 

number of D-dimensional vectors constructed out of the scalar time series. For 
some range r, called the scaling region, C(r) scales as rdc, where d, is the 
correlation dimension (Grassberger and Proccacia, 1983). A saturation of & as the 

embedding dimension D increases indicates that the time series has a non-random 

component. 
The correlation integral analysis is applied to the experimental data of 

pressure in two-phase flows. Figure 7 shows the correlation functions C(r) versus 

log2 r for plug, slug and annular flows, respectively, with embedding dimensions 
increasing from 5 to 30 in intervals 5. The correlation dimensions at different 

embedding dimensions are determined by the slopes of the least-squares fitted 
straight line of the correlation functions. The estimated correlation dimensions 

versus the embedding dimensions for plug, slug and annular flows are plotted in 
Fig. 8, which shows that the correlation dimensions tend to saturate at values of dc 

= 6.6 as the embedding dimension reaches 15 or greater for the plug flow, at values 

of d, = 5.4 as the embedding dimension reaches 20 or greater for the slug flow, and 
at values of & = 9.3 as the embedding dimension reaches 20 or greater for the 
annular flow. The results from Figs. 7 and 8 provide evidence that the two-phase 
flow in the small channel are deterministic chaotic motions not a random 
oscillation (the dimension of random oscillation will increase as the embedding 

dimension increases). 

It appears that the correlation dimension may provide a new tool in 
identification of two-phase flow patterns and transitions in a small, horizontal, 
rectangular channel. 
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4. Identifying Flow Patterns and Transitions 
The correlation functions C(r) with various mass quality x in three regimes 

of plug-bubble, slug and annular flows are shown in Fig. 9 (with embedding 

dimension dE= 20). For the plug-bubble flows, the correlation functions fall in the 

region of log;! r = -5 to 0, and with mass quality x increasing, the correlation 
function advances to right (see Fig. 9 (a)); for the slug flows, the correlation 

functions fall in the region of log;! r = -1 to 3, and with mass quality x increasing, 

the correlation function again shifts to the right (see Fig. 9 (b)); for the annular 

flows, the correlation functions fall in the region of log;! r = 1 to 3, and with mass 

quality x increasing, the correlation function shifts to the left (see Fig. 9 (c)). 

Figure 9 shows a tendency of the correlation function to distinguish flow patterns 
for two-phase flows in small channels. 

Correlation dimensions as a function of mass quality x are compared with 

RMS pressures in Fig. 10. We can identify a difference in fractal dimension levels 

for the various flow regimes, even though all would be defined as high- 
dimensional chaos. When plotted as a function of mass quality, a change in trend 

of the correlation dimension could be identified with the plugbubble-to-slug flow 
pattern transition. With increasing mass quality, the correlation dimension 
decreases in the plughubble region and increases in the slug region. the 

correlation dimension was also lower in the plughubble region. The transition to 
annular flow could not be determined from the correlation dimension data. For 

their plugbubble-to-slug flow transition the result is in good agreement with the 
result of RMS of dynamic pressure-time signals (Wambsganss et al., 1990, 1991, 
1992a and 1992b). 

From Figs. 9 and 10, we can see there apparently exist changes in the trend 

of the fractal dimension estimation that can be used to distinguish flow patterns and 
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transitions, as these two-phase flows in small channels are, in fact, deterministic 

s ys tems . 

5. Conclusions 
Various measurement tools of chaos theory were applied to analyze two- 

phase pressure signals with the objective to identify and interpret flow pattern 

transitions. These measurement tools included power spectral density function, 
autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and 

fractal dimensions. 

Application of the pseudo-phase-plane trajectory, the power spectral density 
(PSD) and autocorrelation functions indeed indicated the existence of chaotic 

behavior in the two-phase pressure measurement. In particular, the pseudo-phase- 

plane trajectory displayed complicated patterns, the PSD was continuous, and the 
autocorrelation function showed a peak at z = 0 and then dropped off rapidly. The 
Lyapunov exponents were shown to be greater than zero in quality ranges 
corresponding to all the various flow patterns of interest. This provides the most 

convincing evidence of chaotic behavior and distinguishes the two-phase flows in 

the small, horizontal, rectangular channel as a deterministic chaos rather than a 
random system. However, the results from these various measurement tools of 
chaotic motion, such as the PSD function, autocorrelation function, pseudo-phase- 

plane trajectory, Lyapunov exponents, can not be easily adopted as criteria for flow 
pattern transition identification. 

The theory of fractal dimensions, in the form of correlation dimensions, was 
used to quantify the identified chaotic behavior. Embedding techniques and 

approach to obtain the optimum time delay were employed to calculate the 
correlation dimensions. In general, high dimensions were found for two-phase 

pressure signals in ranges corresponding to all the various flow patterns of interest. 
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When plotted as a function of mass quality, a change in trend of correlation 

dimension could be identified with the plugbubble-to-slug flow pattern transition. 
The correlation dimension decreased as the mass quality increased in the 
plugbubble region, while the correlation dimension increased as the mass quality 

increased in the slug region. The correlation dimension was lower in the 

plugbubble region. 
It appears that fractal dimensions offer a promising way to objectively 

classify flow patterns. However, the time for data processing is such that it is not a 
practical tool for on-line analysis. The software we used for dimension estimations 

are not well developed. Algorithms should be improved so that more data points 
can be involved and processing time can be reduced. Then, not only the accuracy 
of chaotic measurements will be increase greatly, but also the method of fractal 

dimension estimations can be easily applied in broad practical purposes. 
It was demonstrated that the randomlike pressure fluctuations, characteristic 

of two-phase flow in small rectangular channels, are chaotic in nature. As such, 
they are governed by a high-order deterministic system. The correlation dimension 

is potentially a new approach for identification of certain two-phase flow patterns 

and transitions. However, more work will be required before objective techniques 
are available for identification and classification of two-phase flow patterns and 

transitions. We hope this study will stimulate the performance of future research 
relating to the application of chaos theory in this important area. 
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Figure Captions 

Fig. 1 Schematic illustration of adiabatic two-phase flow apparatus 

Fig. 2 Time histories of dynamic pressure pl(t) for (a) plug, (b) slug and (c) 
annular flows 

Fig. 3 PSDs of dynamic pressure pl(t) for (a) plug, (b) slug and (e) annular flows 

Fig. 4 Autocorrelation functions of dynamic pressure pl(t) for (a) plug, (b) slug 
and (c) annular flows 

Fig. 5 Pseudo-phase planes of dynamic pressure pl(t) for (a) plug, (b) slug and (c) 
annular flows 

Fig. 6 Lyapunov exponents of dynamic pressure pl(t) for (a) plug, (b) slug and (c) 
annular flows 

Fig. 7 Correlation dimensions of dynamic pressure pl(t) for (a) plug, (b) slug and 
(c) annular flows 

Fig. 8 Correlation dimensions dc vs. embedding dimension dE for plug, slug and 
annular flows 

Fig. 9 Correlation dimensions of dynamic pressure pl(t) for (a) plug, (b) slug and 
(c) annular flows with embedding dimension dE = 20 

Fig. 10 Comparison of correlation dimension and RMS of pressure pl(t) vs. mass 
quality x 
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