COVID-19 Diagnosis and Segmentation Using Machine Learning Analyses of Lung Computerized Tomography

PDF Version Also Available for Download.

Description

COVID-19 is a highly contagious and virulent disease caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 disease induces lung changes observed in lung computerized tomography (CT) and the percentage of those diseased areas on the CT correlates with the severity of the disease. Therefore, segmentation of CT images to delineate the diseased or lesioned areas is a logical first step to quantify disease severity, which will help physicians predict disease prognosis and guide early treatments to deliver more positive patient outcomes. It is crucial to develop an automated analysis of CT images to save their time and efforts. This … continued below

Physical Description

xiii, 127 pages

Creation Information

Mittal, Bhuvan August 2021.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 88 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Mittal, Bhuvan

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

COVID-19 is a highly contagious and virulent disease caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 disease induces lung changes observed in lung computerized tomography (CT) and the percentage of those diseased areas on the CT correlates with the severity of the disease. Therefore, segmentation of CT images to delineate the diseased or lesioned areas is a logical first step to quantify disease severity, which will help physicians predict disease prognosis and guide early treatments to deliver more positive patient outcomes. It is crucial to develop an automated analysis of CT images to save their time and efforts. This dissertation proposes CoviNet, a deep three-dimensional convolutional neural network (3D-CNN) to diagnose COVID-19 in CT images. It also proposes CoviNet Enhanced, a hybrid approach with 3D-CNN and support vector machines. It also proposes CoviSegNet and CoviSegNet Enhanced, which are enhanced U-Net models to segment ground-glass opacities and consolidations observed in computerized tomography (CT) images of COVID-19 patients. We trained and tested the proposed approaches using several public datasets of CT images. The experimental results show the proposed methods are highly effective for COVID-19 detection and segmentation and exhibit better accuracy, precision, sensitivity, specificity, F-1 score, Matthew's correlation coefficient (MCC), dice score, and Jaccard index in comparison with recently published studies.

Physical Description

xiii, 127 pages

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2021

Added to The UNT Digital Library

  • Aug. 26, 2021, 8:47 p.m.

Description Last Updated

  • Feb. 13, 2024, 8:42 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 88

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mittal, Bhuvan. COVID-19 Diagnosis and Segmentation Using Machine Learning Analyses of Lung Computerized Tomography, dissertation, August 2021; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1833510/: accessed April 28, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen