
 

 

 

 
 

 

  

APPROVED: 
 
JungHwan Oh, Major Professor  
Song Fu, Committee Member 
Qing Yang, Committee Member 
Bill Buckles, Committee Member  
Yan Huang, Chair of Department of Computer 

Science and Engineering 
Hanchen Huang, Dean, College of Engineering 
Victor Prybutok, Dean of the Toulouse 

Graduate School 

COVID-19 DIAGNOSIS AND SEGMENTATION USING MACHINE LEARNING ANALYSES  

OF LUNG COMPUTERIZED TOMOGRAPHY 

Bhuvan Mittal 

Dissertation Prepared for the Degree of  

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF NORTH TEXAS 

August 2021 



 

Mittal, Bhuvan. COVID-19 Diagnosis and Segmentation Using Machine Learning Analyses 

of Lung Computerized Tomography. Doctor of Philosophy (Computer Science and Engineering), 

August 2021, 127 pp., 41 tables, 46 figures, 1 appendix, 139 numbered references.      

COVID-19 is a highly contagious and virulent disease caused by the severe acute 

respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 disease induces lung changes 

observed in lung computerized tomography (CT) and the percentage of those diseased areas on 

the CT correlates with the severity of the disease. Therefore, segmentation of CT images to 

delineate the diseased or lesioned areas is a logical first step to quantify disease severity, which 

will help physicians predict disease prognosis and guide early treatments to deliver more positive 

patient outcomes. It is crucial to develop an automated analysis of CT images to save their time 

and efforts. This dissertation proposes CoviNet, a deep three-dimensional convolutional neural 

network (3D-CNN) to diagnose COVID-19 in CT images. It also proposes CoviNet Enhanced, a 

hybrid approach with 3D-CNN and support vector machines. It also proposes CoviSegNet and 

CoviSegNet Enhanced, which are enhanced U-Net models to segment ground-glass opacities and 

consolidations observed in computerized tomography (CT) images of COVID-19 patients. We 

trained and tested the proposed approaches using several public datasets of CT images. The 

experimental results show the proposed methods are highly effective for COVID-19 detection 

and segmentation and exhibit better accuracy, precision, sensitivity, specificity, F-1 score, 

Matthew’s correlation coefficient (MCC), dice score, and Jaccard index in comparison with 

recently published studies. 
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CHAPTER 1 

INTRODUCTION: COVID-19 CLASSIFICATION AND SEGMENTATION 

1.1 What is COVID-19? 

COVID-19 is a highly infectious and virulent disease with human-to-human transmission 

[78] and has flu-like symptoms caused by the severe acute respiratory syndrome - corona virus – 

2 (SARS-CoV-2). It can cause a severe inflammatory response in the lungs with SARS-like 

symptoms. COVID-19 was declared a global pandemic in March 2020 and has caused over 175 

million cases and 3.8 million deaths worldwide as of June 15, 2021 [1]. 

1.2 Why COVID-19 Detection and Segmentation via Lung Imaging? 

A multinational consensus from the Fleischner Society reported that detecting patients at 

an early stage and isolating them from the people with a high risk of exposure is essential. X-ray, 

computerized tomography (CT) and ultrasound are three imaging modalities we are aware of 

with published research for the detection of COVID-19 from lung imaging. We chose the CT 

modality for this research per advice from an expert radiologist since more lung tissue details are 

seen in CT images. 

Lung computerized tomography (CT) is a relevant tool for this purpose due to its high 

sensitivity in detecting early pneumonic changes. It can also contribute to the management and 

triage of the disease by detecting severe cases [2]. However, this classification involves 

radiologists’ time and efforts significantly. It is crucial to develop an automated analysis of CT 

images to save their time and efforts. 

However, COVID-19 and other types of pneumonia in CT have similar imaging 
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characteristics, which can hamper correct diagnosis by radiologists. A radiologists’ performance 

study in differentiating COVID-19 from other viral pneumonia reported that the median values 

of sensitivity and specificity were 83% (ranging 67%-97%) and 96.5% (ranging 7%-100%), 

respectively [3]. Therefore, it is crucial to develop an automated analysis of CT images to save 

radiologists’ time and efforts, and to increase the classification sensitivity and specificity. 

COVID-19 disease induces lung changes observed in lung computerized tomography (CT) 

or radiographic images and those predominantly include ground-glass opacification (GGO) with 

occasional consolidation in the peripheral regions of the lungs [54]. The Fleischner Society 

glossary of terms [57] defines ground-glass opacities as an increase in opacification of the lung 

that does not obscure the blood vessels and airways. The Fleischner Society defines consolidation 

as a homogeneous opacification that obscures blood vessels and airway walls. 

 
Figure 1.1: COVID-19 lung changes: (a) percentage of COVID-19 positive patients’ CT showing GGO, (b) 
percentage of COVID-19 positive patients’ CT showing consolidation. 

 
Anatomically, the COVID-19 disease causes the little sacs of lung tissue called alveoli to 

collect fluid, which causes inflammation of the lungs. CT imaging shows this inflammation as 
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ground-glass opacities (GGOs) which further progress into consolidations. Salehi et al.’s [55] 

review of 30 medical studies consisting of 919 patients revealed that 88% of COVID-19 positive 

patients’ CT scans showed ground-glass opacification (GGO) and 32% showed consolidation as 

shown in Figure 1.1. 

Additionally, the percentage of the lung affected by ground-glass opacities and 

consolidation on the computerized tomography is a measure of the severity of the disease [58]. 

Therefore, segmentation of CT images to delineate the diseased or lesioned areas is a logical first 

step in helping physicians quantify disease severity and disease prognosis [33] as shown in Figure 

1.2. 

 
Figure 1.2: Why COVID-19 segmentation? 

 
To summarize, the artificial intelligence-powered COVID-19 diagnosis techniques applied 

to lung CT can help save radiologist’s time and can provide an efficient and early diagnosis and 

severity assessment for COVID-19. 
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1.3 The Research Problem Addressed in This Dissertation. 

The major research problem that is addressed in this dissertation is automatic early 

COVID-19 detection and segmentation. This problem is subdivided into different phases which 

include the following: 

• Can DNN based methods help in efficient and effective COVID-19 detection? What 
approaches could show a superior generalizability? 

• How can COVID-19 detection be accomplished efficiently from lung imaging to assist 
radiologists in diagnosis? 

• How can the diseased areas of the lungs having ground-glass opacities and 
consolidations be quantified?  

• Can DNN based methods learn efficiently and effectively from the highly sparse 
representations of COVID-19 diseased regions? 

Most of these problems are addressed in the subsequent chapters of this dissertation. 

1.4 What is the Significance of the Problem? 

The problem of COVID-19 detection and disease quantification is highly significant and 

worthy of attention. As depicted in Figure 1.3, early patient identification helps in early treatment 

which leads to more positive patient outcomes, and patient isolation prevents the spread. 

 
Figure 1.3: Impact of early COVID-19 diagnosis on patient outcomes and disease spread. 

 
Segmentation of computerized tomography (CT) images to delineate the diseased or 
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lesioned areas helps quantify disease severity and assists physicians in predicting disease 

prognosis and to administer appropriate treatments to save lives [33].  

1.5 The Solution Explored in this Dissertation 

This dissertation proposes the use of supervised deep learning methods to solve the 

problem of covid-19 detection and disease quantification.  

Convolutional neural networks are a well-established method used for disease diagnosis 

via medical imaging. This dissertation explores the various convolutional neural network models 

that can help diagnose COVID-19 from lung computerized tomography (CT). We also explore the 

enhancements to the U-Net-based deep learning methods to help assess the COVID-19 disease 

severity.  

1.6 What are the Challenges? 

For automated analysis of CT images, several methods have been published in [12], [16] 

which are based on convolutional neural networks (CNN) originally proposed by LeCun [21]. 

Roberts et al. [28] systematically screened all published papers and preprints from January 2020 

to October 2020 on new machine learning models for the diagnosis or prognosis of COVID-19 

from Chest X-Ray (CXR) or CT images. From 2,212 studies, 415 studies were included after initial 

screening, and a systematic review on 62 studies revealed major methodical deficiencies due to 

the high likelihood of duplicated images across different sources that result in so-called 

"Frankenstein datasets", underlying biases such as including samples from non-representative 

populations, and low-quality data [29].  

Additionally, in most studies, the CT image data were split randomly into training and 
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testing such that different images from one patient’s CT scan end up in both training and 

validation. This violates the independence and identically distributed (IID) assumption.  

Furthermore, a high variation in infection characteristics, low-intensity contrast between 

infections and normal tissues, and an insufficient amount of data inhibiting the training of a deep 

model are other challenges in disease classification and segmentation from CT scans [4]. Accurate 

segmentation of computerized tomography (CT) volumes is a challenge due to complex 

structures, pathological changes, individual differences in infection characteristics, and low 

image quality [34]. Moreover, class imbalance and annotation errors also make the segmentation 

task more challenging [43].  

Due to these challenges, it is unclear which study (if any) is of potential clinical utility. To 

solve these issues and make the research reproducible, higher-quality datasets, heavily 

documented research, and external validation are needed. Lie et al. [13] recommend that 

artificial intelligence-based approaches for COVID-19 could be expanded to embrace all sorts of 

respiratory illnesses, even new coronaviruses that may arise in the future. With Artificial 

Intelligence (AI), a standard CT scan or X-ray becomes a versatile tool to assist with a speedy 

diagnosis to contain disease spread. Even after the pandemic is over, such techniques can be 

expanded to diagnose and prognosticate all respiratory illnesses including new viruses when 

doing any chest radiograph or low-dose CT for lung screening.  

1.7 The Novel Contributions of This Dissertation  

• A novel approach of using a 3-dimensional convolutional neural network (CNN) on 
three-dimensional CT volumes for COVID-19 detection. 

Accurate predictions of COVID-19 diagnosis in terms of various metrics including 
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Accuracy, Precision, Sensitivity, Specificity, F-1 score, and the Matthews correlation coefficient 

(MCC) in comparison to the recent studies. 

• A novel approach of segmenting COVID-19 diseased regions using spatial and channel-
attention on the pre-trained DenseNet169 backbone-based U-Net model on lung CT. 

This model’s dice score and Jaccard index of COVID-19 segmentation is statistically 

significantly higher than previously reported values in recent studies, as evaluated on three 

different public datasets via the held-out test set approach. 

This novel approach of using the pre-trained DenseNet as the encoder backbone with the 

transfer learning strategy exhibited a superior performance on the segmentation task versus 

training a deep model from scratch.  

This approach is also a faster and more efficient method than training a model from 

scratch. 

1.8 Role of CT Chest in COVID-19 Infection 

Chest CT has an important role in the diagnosis, detection of complications and 

prognostication of coronavirus disease 2019. Per Rubin et. al [81], CT Imaging is not routinely 

indicated as a screening test for COVID-19 in asymptomatic individuals, and it is not indicated for 

patients with mild features of COVID-19 unless they are at risk for disease progression. However, 

CT Imaging is indicated for patients with moderate to severe features of COVID-19 regardless of 

COVID-19 test results. It is also indicated for patients with COVID-19 and evidence of worsening 

respiratory status. Additionally, CT is indicated in recovered cases with functional impairment 

and/or hypoxaemia.  
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CT chest may be normal in up to 10.6% cases [60]. These were mostly patients in the first 

4-5 days after symptom onset, however a small though non-negligible number of patients also 

showed normal CT in the later stages of infection. 

Zhou et al. [93] reported the common CT findings of COVID-19 infection as listed below: 

• Ground glass opacities 

• Consolidation 

• Reticular pattern 

• Vacuolar sign 

• Microvascular dilation sign 

• Fibrotic streaks 

• Subpleural line 

• Pleural thickening 

Adams et al. [60] reported the various CT findings as detailed below: 

• The commonest findings (>70% incidence) on chest CT scan are ground glass opacities, 
vascular enlargement, bilateral involvement, preferential lower lobe involvement and 
peripheral, posterior, and basal predilection [60].  Kwee et. al [76] and Ng et al. [80] 
also confirmed that ground glass opacities and consolidation in the lung periphery is 
the imaging hallmark of COVID-19. In summary, a peripheral predominance of lung 
opacities is observed in lung CT of COVID-19 patients. 

• Several chest CT findings have been reported with intermediate frequency, at 10-70% 
of Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) proven cases. These 
findings include consolidation, linear opacities, septal thickening, reticulation (crazy 
paving pattern), air bronchogram, pleural thickening, halo sign, bronchial wall 
thickening and dilatation [60].  

• Several chest CT abnormalities are seen less commonly (<10% of RT-PCR proven cases) 
and these include pleural effusion, lymphadenopathy, tree in bud sign, central lesion 
distribution, pericardial effusion, and cavitating lung lesions. These findings usually 
occur in combination with other more common findings and usually later in course of 
disease [60]. 
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1.8.1 CT Findings for Severe COVID-19 Requiring Intensive Care Unit (ICU) Care 

Saburi et al. [82] revealed that mild COVID-19 pneumonia mainly starts as small 

subpleural, unilateral or bilateral GGO in the lower lobes as shown in Figure 1.4. These lesions 

develop into subsequent consolidation and a crazy-paving pattern. The residual GGO and 

subpleural parenchymal bands appear gradually after two weeks, indicating a decrease in the 

severity of the disease. What are the findings in computerized tomography predictive of severe 

disease which will require intensive care transfer? Cases with the highest lung severity score at 

high resolution computerized tomography (HRCT) were admitted to the intensive care unit. 

Patients in the emergency group are more likely to have the following CT findings: architectural 

distortion, traction bronchiectasis, and higher CT involvement score. Additionally, bilateral 

patchy consolidation and interstitial abnormalities on CT and CXR are reported to occur twice as 

frequently in severe patients than in non-severe patients. 

 
Figure 1.4: CT image of a COVID-19 positive patient with the COVID-19 disease-affected region shown 
as the red bounding box. Image sourced from Saburi et al. [82]. 
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1.8.2 Temporal Evolution of Disease 

Knowledge of the natural temporal evolution of lung abnormalities in COVID-19 may be 

helpful in determining the stage of disease and in distinguishing them from potential 

complications [47],[52]. 

1. Early Stage: (0-5 days) Normal or mainly ground glass opacities.  

2. Progressive Stage (5-8 days) Increased ground glass opacity and crazy paving 
appearance. 

3. Peak Stage (9-13 days)   Characterized by progressive consolidation 

4. Late Stage (>= 14 days)   Gradual decrease of consolidation and ground glass opacities. 
Appearance of signs of fibrosis i.e., parenchymal bands, traction bronchiectasis. 

1.8.3 CT Chest Severity Score  

Chest CT severity score is designed to quantitate the extent of lung involvement and 

assess the severity of COVID-19. This could expedite the identification and management of 

patients with moderate and severe disease. A scoring method of 0-40 is described in which both 

lungs are divided into 20 regions [61]. Each region is given a score of 0-2 based on the percentage 

of lung involvement: 

• Score 0:   0% involvement 

• Score 1:   < 50% involvement 

• Score 2:   > 50% involvement 

It should be noted that the CT findings of COVID-19 infection may have overlap with other 

viral pneumonias. It is not always the case that first a patient develops GGOs and later develops 

consolidation or other imaging features. In fact, for elderly or pediatric cases, there are some 

atypical manifestations [59]. 
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Note that the axial lung CT images could show either an open lung or the closed lung as 

shown in Figure 1.5, depending on which part of the lung is being scanned in that axial slice.  

We can see that the closed lung image only shows a small portion of the lungs. The open 

lung images show a larger proportion of the lung region. While some published works discarded 

the closed lung images from their dataset to supposedly make the model train better, an expert 

radiologist advised us not to do that.  This is because COVID-19 disease can occur in any specific 

part of the lung alone including the upper or lower regions of the lungs only.  

 
Figure 1.5: (a) Closed Lung for an axial slice from the top part of the lung, (b) Open Lung for an axial slice 
from the middle part of the lung, (c) Closed Lung for an axial slice from the bottom part of the lung. 
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The lung CT image samples are shown in Figure 1.6, with both COVID-19 positive and 

COVID-19 negative cases. 

 
Figure 1.6: Examples of chest CT scans of patients from UCSD-AI4H and MosMedData; the red bounding 
boxes (added by authors) enclose the COVID-19 diseased regions. (a) the COVID-19 positive class from 
UCSD-AI4H, (b) the COVID-19 negative class from UCSD-AI4H, (c) the COVID-19 positive class from 
MosMedData, (d) the COVID-19 negative class from MosMedData. 

 
Figure 1.7 shows the COVID-19 CT images with radiologist-provided ground truth labels 

for segmentation of ground-glass opacities and consolidations.  

 
Figure 1.7: Examples of chest CT scans of patients with varying degrees of COVID-19 severity from the 
MosMedData. Left to right: mild to critical severity based on percentage of lung affected. Lower row 
shows the physician annotations added in blue color. [139] 

 

1.9 Organization of this Dissertation 

The remaining part of this dissertation is organized as follows: Chapter 2 is a discussion 
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on the related works in COVID-19 detection, highlighting the various methods that have been 

used in existing works. Chapter 3 explores the effectiveness of various deep learning models for 

COVID-19 detection, while also comparing them based on different performance metrics. 

Chapter 4 presents the related work on COVID-19 lesion segmentation. In Chapter 5, we present 

the COVID-19 lesion segmentation models whose performance metrics are compared with the 

state-of-the-art. Next, in Chapter 6, we present the ablation studies for COVID-19 detection and 

segmentation. Finally, in Chapter 7, we discuss the conclusions of this research and provide 

directions for future research. 
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CHAPTER 2 

RELATED WORK: COVID-19 CLASSIFICATION* 

2.1 Overview 

Shoeibi et al. [86] reviewed studies on the application of deep learning (DL) techniques 

for COVID-19 diagnosis and automated segmentation of lungs using X-ray and CT images. Deep 

learning and traditional machine learning (ML) have been used to diagnose the COVID-19 

accurately using many public databases. Convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), autoencoders (AEs), deep belief networks (DBNs), generative adversarial 

networks (GANs), and hybrid networks such as CNN-RNN and CNN-AE have been used for 

automated detection of COVID-19 as shown in Figure 2.1. 

 
Figure 2.1: The various deep learning methods used for COVID-19 diagnosis. 

 
Applying machine learning for segmentation is highly important to save radiologists’ time. 

Fuzzy clustering methods [128], [129] and DL procedures such as Ronneberger et al.’s U-Net [105] 

are important. 

 
* This entire chapter is reproduced from Mittal, B. and Oh, J. 2021. CoviNet: Covid-19 diagnosis using machine 
learning analyses for computerized tomography images. SPIE Proceedings Vol. 11878: Thirteenth International 
Conference on Digital Image Processing (ICDIP 2021), with permission from the Society of Photo-Optical 
Instrumentation Engineers (SPIE). 
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Various DL methods used for the automated detection of COVID-19 patients using X-ray 

and CT images are two-dimensional (2D) CNN, AlexNet, Visual Geometry Group (VGG) network, 

GoogLeNet, DenseNet, XceptionNet, MobileNet, SqueezeNet, Inception-ResNet, CapsNet, 

NasNetmobile, ShuffleNet, EfficientNet, and Generative Adversarial Networks (GAN). A 

generalized end-to-end framework for COVID-19 diagnosis is depicted in Figure 2.2. 

 
Figure 2.2: A generalized end-to-end framework for the COVID-19 classification. 

 
A typical 2D CNN architecture is shown in Figure 10. CNNs comprise convolutional, 

pooling, and fully connected layers. The convolutional layers are usually followed by the pooling 

layers, and their output is fed to the fully connected layers as shown in Figure 2.3. Also, a variety 

of methods like dropout and batch normalization, originally proposed by LeCun et al. [21] help 

these networks learn better. 

 
Figure 2.3: A typical 2D CNN architecture for COVID-19 classification 

 
Most works on COVID-19 classification are based on chest CT or Chest X-Ray (CXR) images. 

We summarize the research based on chest CT and CXR in this section, which are relevant to our 
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COVID-19 classification work.   

2.2 Related Work Review 

Ko et al. [12] implemented a fast-track COVID-19 classification network (FCONet) that 

uses transfer learning on four deep models namely, VGG16, ResNet-50, Inception-v3, and 

Xception. In each of the four models, the ImageNet pre-trained convolutional base was followed 

by newly added classification layers comprising a flattening layer, two fully connected layers and 

a softmax layer. Their classifier has three classes: COVID-19, other pneumonia, and non-

pneumonia. For the Xception and InceptionV3, the F1-score was 0.8806 and 0.5247 respectively, 

and the MCC was 0.8491 and 0.5281, respectively. 

Similarly, Shah et al. [16] proposed CTnet10 based on CNN, which was compared with 

DenseNet-169, VGG-16, ResNet-50, InceptionV3, and VGG-19. Their CNN was trained from 

scratch, while the other deep models were ImageNet pre-trained models for which transfer 

learning was done using the COVID-19 dataset.  

Goncharov et al. [27] proposed a modified U-Net model for the classification. Their 

modification to U-Net was that the classification layers were added to the most high-resolution 

upper part of U-Net rather than the bottom.  

Al-Karawi et al. [5] used Generative Adversarial Network (GAN) with four different deep 

learning models for the data augmentation and reported accuracy improvement by several 

percentage points based on the InceptionV3 pre-trained model.  

Ardakani et al. [6] employed an ensemble (Covidiag) classifier comprising five classifiers 

namely decision tree, K-nearest neighbor, naive Bayes, support vector machine, and ensemble 

on 20 radiological features from CT images.  
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Bridge et al. [7] proposed a generalized extreme value (GEV) distribution activation 

function in an Inception-v3 CNN model. The GEV helps to improve the performance over the 

traditional sigmoid activation function when one class significantly outweighs the other.  

Fang et al. [8] diagnosed COVID-19 from radiomics features or hand-engineered features 

from medical images to diagnose COVID-19. The three selected radiomic features were fed to 

the support vector machine for the final classification. 

Hassantabar [9] employed a 3-layer multilayer perceptron (MLP) on the statistical 

features of images. They also employed a CNN to learn from lung images directly, and then 

performed a comparison of the CNN versus the MLP.   

Horry et al. [10] proposed a bidirectional long short-term memory network with mixture 

density network (DBM) for COVID-19 classification from chest CT images. The Memetic Adaptive 

Differential Evolution (MADE) algorithm was used for hyper-parameter tuning.   

Hu et al. [11] proposed a weakly supervised deep learning to minimize manually labeled 

CT images needed while still accurately distinguishing COVID-19 from non-COVID-19 cases. A 

multi-scale learning scheme involves spatially aggregating via Global Max Pooling (GMP) of the 

feature maps from different convolutional layers. Integrated Gradients feature attribution 

method, joint saliency maps helped to extract the bounding box to predict the location of the 

lesions.  

Liu et al. [13] aimed to distinguish COVID-19 from general pneumonia (GP) based on 34 

statistical texture features including the gray-level-gradient co-occurrence matrix (GLGCM), 

ReliefF feature selection algorithm, and an ensemble classifier.  First, 34 statistical texture 

features were extracted, including 13 gray-level co-occurrence matrix (GLCM) features, 15 gray-
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level-gradient co-occurrence matrix (GLGCM) features, and 6 histogram features. Second, ReliefF 

algorithm selected those features whose average weights exceed an empirically set threshold T. 

Finally, the selected features were fed to an ensemble of the bagged tree (EBT) and four other 

machine learning classifiers including support vector machine (SVM), logistic regression (LR), 

decision tree (DT), and K-nearest neighbor with Minkowski distance equal weight (KNN). 

Perumal [14] applied a transfer learning technique to detect COVID-19 from the pre-

trained model on viral pneumonia trained on the NIH chest x-ray dataset [104] of 30,805 patients. 

It was reported that this model was superior to out-of-domain ImageNet pre-trained models. 

Further, Haralick texture-based features only focus on the area of interest to detect COVID-19. 

Purohit et al. [15] presented a multi-image augmentation to increase the dataset size for 

training a CNN-based model for detecting COVID-19 in chest X-Ray and chest CT scan images. The 

multi-image augmentation obtains discontinuity information from the filtered images to 

effectively result in a larger training set to bolster model performance.  

Salehi’s [36] survey paper provided a high-level overview on epidemiology and 

pathogenesis of COVID-19, disease symptoms, reports recently published deep learning-based 

models like Convolutional Neural Networks’ performance on lung imaging data.  

Silva et al. [17] proposed an efficient deep learning technique with a voting-based 

approach to classify COVID-19 from CT images. Data augmentation was done using rotation, 

horizontal flip, and scaling, and transfer learning techniques were also employed. The 5-fold 

cross-validation F1-score is 0.8619. The cross-dataset analysis shows poor generalization since 

accuracy drops from 87.68% to 56.16% on the best evaluation scenario. Thus, COVID-19 
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detection through CT-scans must improve exponentially and be validated on more diverse 

datasets to evaluate the methods in a realistic scenario. 

Song et al. [18] proposed a large-scale bi-directional generative adversarial network 

(BigBiGAN) architecture was used to extract the features. The extracted semantic features from 

the CT images were then used for classifying using three classifiers, namely, linear, support vector 

machine (SVM), and k-nearest neighbor (KNN).  

Sun et al. [19] proposed an Adaptive Feature Selection guided Deep Forest (AFS-DF) 

algorithm with the Logistic regression classifier. The AFS-DF helped reduce the redundancy of 

features to help the model learn better from relatively small-scale data. Feature selection helps 

make features less redundant, and final classification is done via three methods: Logistic 

Regression (AFSDF-LR), Support Vector Machine (AFSDF-SVM), and Random Forest (AFSDF-RF) of 

which the AFSDF-LR achieved the best F1-score. 

Xu et al. [20] distinguished influenza-A viral pneumonia (IAVP), COVID-19, and healthy 

cases in CT images using deep learning. Segmentation of infected candidate regions was done 

first using a 3D deep learning model. These segmented images were then fed to a location-

attention classification model for the final classification prediction along with a confidence score. 

Finally, the Noisy-OR Bayesian function was used to categorize each CT case along with a 

confidence score. 

Afshar et al. [62] proposed a COVID-CAPS framework based on Capsule Networks to 

detect COVID-19 from X-ray images. Advantage of COVID-CAPS over CNN-based models is that it 

is less complex, has a much lower number of trainable parameters in comparison to the more 

prevalent CNN models. On small COVID-19 data sets, this model shows a better performance 
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than Deep Neural Networks. COVID-CAPS comprises four convolutional layers and three capsule 

layers, which use a  fast  iterative  Expectation Maximization procedure for  “routing-by-

agreement” that updates the probability with which a part is assigned as COVID-19 positive based 

on the proximity of the vote coming from that part to the votes coming from other parts that are 

assigned as COVID-19 positive. COVID-CAPS was pre-trained on the public NIH Chest X-ray 

dataset [104] for common thorax diseases. Thereafter, transfer learning is done to fine tune the 

capsule layers only. Since their dataset is highly imbalanced, the loss function was modified to 

assign a higher penalty to the false negatives. Pre-training was also done on another dataset of 

X-ray images and transfer learning was applied on COVID-19 X-ray dataset. 

Albahli et al. [63] detected COVID-19 by using chest X-ray data using ECOVNet, an 

assortment of deep convolutional neural networks (CNN) based on EfficientNet. Data 

augmentation is done on the chest x-ray data prior to CNN input. Then, ImageNet pre-trained 

weights for EfficientNet are transferred with some customized training and fine-tuning on top 

layers, followed by an ensemble of CNNs.  

Burgos-Artizzu [64] developed an Inception CNN-based COVID-19 classifier from publicly 

available CXR images downloaded from seven different online data sources. This is a pre-print 

and has not been peer-reviewed. 

Hu et al. [67] designed a tool for diagnosing COVID-19, utilizing sixteen data augmentation 

operations, and performance was evaluated without noisy labels and with noisy labels. This is a 

pre-print and has not been peer-reviewed. 

Huang et al. [66] present a quantitative analysis based on an ambispective observational 

cohort study of 125 patients with COVID-19 in Xiangyang, China. 
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In [68], Ilhan uses convolutional neural networks (CNNs) and ensemble learning with 

feature level fusion fed to multiple classifiers with majority voting scheme for classifying chest x-

ray images into COVID-19, pneumonia, and no-finding classes. The classifiers used were VGG16, 

ResNet50, ResNet101, NasNet, Inception V3, and Xception. Five-fold cross validation accuracy 

values were 87.6%, 85.7% and 85.7% for InceptionV3, ResNet50 and VGG16, respectively. This 

paper is a pre-print and has not been peer-reviewed. 

In [69], Jin et al. deployed an AI system for automatic analysis of CT images to detect 

COVID-19 pneumonia features.  

Khan et al. [70] developed the CoroNet, a Deep Convolutional Neural Network (Xception 

architecture) pre-trained on ImageNet dataset is re-trained end-to-end on two different public 

databases on COVID-19 and other chest pneumonia X-ray images. The F-score is 89.8% for 4-

classes of COVID-19 vs Pneumonia bacterial vs pneumonia viral vs normal and is 91% for 3-classes 

of COVID-19 vs Pneumonia bacterial vs normal. 

Li et al. [71] developed COVNet which extracts visual features from volumetric chest CT 

scans for the detection of COVID-19 positive patients from negative patients. The dataset was 

collected from six hospitals with 4,352 chest CT scans from 3,322 patients and the non-Covid 

classes included community-acquired pneumonia (CAP) and other non-pneumonia abnormalities 

to ensure model robustness. On an independent test set, the sensitivity and specificity for 

detecting COVID-19 was 90% and 96%, and for CAP was 87% and 92%.  

Mohammed et al. [72] proposed ResNext+, a weakly-supervised COVID-19 detection 

approach which provides slice level predictions from only volume level data labels. A lung 

segmentation mask was used for pre-processing and spatial and channel attention were to 
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extract spatial features. The Long Short-Term Memory (LSTM) helps capture the sequential 

dependency of the slices. A slice attention module precedes the final dense layer. At slice level, 

the proposed method has an F1 score of 81.4%, which is lower than the previous state-of-the-art 

with an F1 score 83.4%. 

Chen et al. [75] propose the aggregated residual transformation to build a robust and 

expressive feature representation with the soft attention mechanism to improve the model’s 

performance in segmenting the COVID-19 disease in chest CT. 

Rahaman et al. [73] employs 15 different ImageNet pre-trained CNN models (VGG series, 

Xception, ResNetV1 series, ResNetV2 series, Inception series, DenseNet series, and MobileNet 

networks) with transfer learning due to limited number of CXR images in COVID-19 dataset. 

VGG19 obtains the highest classification F1 score of 0.90. 

Somasekar et al. [74] reviewed the research done in machine learning, image analysis 

applications, datasets available, and challenges in the fight against the COVID-19 pandemic. They 

suggested three areas of research namely: Deep convolutional neural networks with transfer 

learning to assist in COVID-19 diagnosis from Chest X-Ray (CXR) images, disease prognosis based 

on patient characteristics, comorbidities, initial symptoms, vital signs to identify high risk 

patients; epidemiological studies using deep neural networks. 

Ter-Sarkisov [107] presents COVID-CT-Mask-Net model for COVID-19 prediction from CT 

scans. First, it detects the ground glass opacities and consolidations in CT scans. Second, the 

ranked regional predictions (bounding boxes with scores) in Mask R-CNN are used to make 

accurate predictions of the image class. The goal is to predict the COVID, common pneumonia 

and control classes for a dataset of CT scans from China National Center for Bioinformation.  
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There is an opportunity to combine texture descriptors such as local binary patterns, edge 

detection histogram and local density features with deep learning features to improve model 

performance [13], [14]. Also, since noise negatively impacts model performance, denoising 

methods in pre-processing should help. 

2.3 3D Deep Learning 

In recent years, three-dimensional (3D) deep learning models have become prevalent in 

the broader field of computer vision and in medical imaging. The promise of these 3D learning 

techniques comes from utilizing and learning the spatial and temporal information inherent in 

the datasets. 

3D learning increases the computational complexity exponentially because of the 

increased number of mathematical matrix operations that are performed on the numpy arrays 

[134] for each convolutional and pooling and other layers of the network. It may not always be a 

fair comparison to compare the 3D model performance with those of 2D models, as the 3D 

volume data may not be available which is required for training a 3D model. The image pixel 

count of typical 3D medical image datasets is 17M/50k = 340 times more pixels than 2D images 

from ImageNet, and time performance would get multiplied cubically for a 3D kernel as shown 

in Figure 2.4. 

 
Figure 2.4: Image dimensionality of 2D versus 3D and Complexity 
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For training with a very small batch size of 2, our system memory utilization was reaching 

an average of 80% on the MosMedData 3D CT volumes. Additionally, the MosMedData is of 

higher resolution, but we needed to downsize the image from 512x512x64 to 224x224x64 which 

in effect leads to 40% to 75% information loss.  

Thus, the 3D models would increase the computational complexity by several orders of 

magnitude. There is not a clear way to scale all the other vision algorithms to the 3D volumes in 

the medical domain. Each convolutional layer could take up to 16 GB of memory for a 

512x512x512 cube for a 12-bit image where the pixel values range from -2048 to 2048. So, the 

memory of a large 128 GB machine would be completely utilized with just 8 convolutional layers 

prohibiting the training of a deeper model from scratch. 

If the available dataset of 3D volumes is small, data augmentation can help increase the 

effective dataset size as shown in Figure 2.5. This larger dataset will enable the training of a 

deeper and more complex model which can exhibit superior performance and be more robust to 

noise.  

 
Figure 2.5: Why data augmentation 



25 

In addition to transformations (shifting, shearing, zooming etc.), generative adversarial 

networks have been used to augment the data by creation of synthetic images as shown in Figure 

2.6. 

 
Figure 2.6: A simple GAN Architecture [86] 
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CHAPTER 3 

METHODOLOGY AND EXPERIMENTS: COVID-19 CLASSIFICATION* 

In this chapter, we describe the proposed CoviNet classifier and the various CNN-based 

deep learning models for which experimentation is performed. 

3.1 Proposed CoviNet 

In this subsection, we discuss our implementation of CoviNet, a deep 3D convolutional 

neural network trained from scratch to classify CT scans into one of the COVID-19 positive or 

COVID-19 negative classes. We were inspired by Pominova et al. [25] and Liu et al. [26] to come 

up with this novel approach which involves the use of 3D filters in convolutional layers to train a 

deep 3D CNN from scratch on the 3D CT scan volumes. This is different from the existing research 

for diagnosing COVID-19 which uses individual slice-level CT imaging data to come up with slice-

level predictions. The 3×3×3 convolutional filter W moves over the feature map F of dimension 

k×k×k with a stride of 1, to perform repeated three-dimensional convolutions, which results in a 

new feature map H of dimension (k-2) ×(k-2)×(k-2). To keep the dimensions unchanged after the 

three-dimensional convolutions, we use the same padding for the outermost pixels. 

The proposed CoviNet’s architecture is shown in Figure 3.1. It has a network depth of 16 

layers comprising four 3D convolutional layers, four 3D max-pooling layers, four 3D batch 

normalization layers, one global average 3D pooling layer, two fully connected dense layers, one 

dropout layer, and a final softmax layer. All four convolutional layers labeled in Figure 3.1 as 

 
* Sections 3.1 to 3.4 and 3.6 to 3.8 are reproduced from Mittal, B. and Oh, J. 2021. CoviNet: Covid-19 diagnosis using 
machine learning analyses for computerized tomography images. SPIE Proceedings Vol. 11878: Thirteenth 
International Conference on Digital Image Processing (ICDIP 2021), with permission from the Society of Photo-
Optical Instrumentation Engineers (SPIE). 
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Conv3D have a kernel size of 3×3×3 but use different numbers of kernels at 64, 128, and 256. The 

RELU activation function is used. The four 3D-max-pooling layers take a 2×2×2 sliding cube which 

subsamples the image length, width and depth dimensions and has a stride of 2. To speed up the 

training of CoviNet, 3D batch normalization layers are included after the 3D pooling layers and 

are labeled in Figure 3.1 as BN. Then, 3D global average pooling takes a 4D input of size 

length×width×depth×channels (=12×12×2×256) and outputs a one-dimensional output of size 

256 channels. Next, the fully connected layer follows with a dimension of 512. After that, there 

is a dropout layer with a dropout factor of 0.3 which is introduced to make the model robust to 

noise. The final layer, as shown in Figure 3.1, is the softmax layer with a sigmoid activation which 

outputs the predicted probability of being COVID-19 positive. Adam optimizer is used with an 

initial learning rate of 0.001 with an exponential decay rate of 0.96 over 100,000 decay steps. 

The validation accuracy is maximized during training.  

 

 
Figure 3.1: Architecture of Proposed CoviNet 

 
Figure 3.2 shows the various steps involved in implementation of the CoviNet model. 

Table 3.1 shows the layers, dimensions and parameter counts of the proposed CoviNet model. 
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Figure 3.2: Steps involved in the implementation of the CoviNet model. 

 

Table 3.1: Layers, dimensions and parameter counts of the CoviNet model. 

Layer (type) Output Shape Param # 

Input Layer Count, 224, 224, 64, 1 0 

3D conv Count, 222, 222, 62, 64     1792 

3D Max Pooling3d Count, 111, 111, 31, 64       0 

Batch Normalization Count, 111, 111, 31, 64 256 

3 D conv  Count, 109, 109, 29, 64 110656     

3D Max Pooling3d Count, 54, 54, 14, 64 0 

Batch Normalization Count, 54, 54, 14, 64 256 

3D conv  Count, 52, 52, 12, 128 221312     

3D Max Pooling Count, 26, 26, 6, 128 0 
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Layer (type) Output Shape Param # 

Batch Normalization Count, 26, 26, 6, 128 512 

3D conv  Count, 24, 24, 4, 256 884992     

3D Max Pooling Count, 12, 12, 2, 256 0 

Batch Normalization Count, 12, 12, 2, 256 1024 

3D global average pooling Count, 256 0 

Dense Count, 512 131584     

Dropout Count, 512 0 

Dense Count, 1 513 

Total params: 1,352,897, Trainable params: 1,351,873, non-trainable params: 1,024 

 

3.2 Datasets 

To evaluate the CoviNet’s performance in comparison to recent studies, two open-source 

CT imaging datasets with physician-provided labels of COVID-19 positive or COVID-19 negative 

were used. These datasets are used in prior research studies and have a reasonable number and 

quality of CT images. The data was annotated by radiologists and classified into COVID-19 positive 

or negative classes. Figure 6 shown earlier showed the sample images for the COVID-19 positive 

and negative classes from both datasets. Note that the UCSD-AI4H has individual images in .png 

or .jpg format from various medical facilities with varying and low resolution. The MosMedData 

has one CT volume per patient with all CT slices for a patient in one .nii file format. 

3.2.1 UCSD-AI4H Data [23]  

The first dataset used is the UCSD-AI4H data [23] with 397 CT images of 278 COVID-19 

negative patients and 349 CT images of 216 COVID-19 positive patients. The entire UCSD dataset 

was used in our experiments, and an 80:20 split was done for the train versus test set. The 

training set has 317 COVID-19 positive CT images and 279 COVID-19 negative CT image slices, 
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and the validation set has 70 COVID-19 positive CT images and 80 COVID-19 negative CT image 

slices. Of 384 patients, 229 only have one CT slice, 73 patients have two slices and only 82 patients 

have in between three to sixteen slices. Table 3.2 shows the patient and image counts for the 

UCSD-AI4H dataset. 

Table 3.2: Patient and Image counts in the Dataset 1: UCSD-AI4H Dataset [23] 

Class Training Validation 

COVID-19 Positive 172 patients 
279 images 

41 patients 
70 images 

COVID-19 Negative 140 patients 
317 images 

31 patients 
80 images 

 

3.2.2 MosMedData [24]  

The second dataset used is the MosMedData [24] with anonymized human lung CT scans 

from 1110 individuals with signs of COVID-19 (CT1-CT4) or without signs of COVID-19 (CT0). On 

the MosMedData, for this research, we performed random stratified sampling to select 6,642 

normal CT image slices from 254 COVID-19 negative patients and 4,245 CT image slices from 172 

COVID-19 positive patients. With an 80:20 split for training versus testing, the training set has 

3,385 COVID-19 positive CT images and 5,305 COVID-19 negative CT image slices, and the test 

set has 860 COVID-19 positive CT images and 1,337 COVID-19 negative CT image slices. Table 3.3 

shows the patient and image counts for the MosMedData. 

Table 3.3: Patient and Image counts in Dataset 2: MosMedData [24] 

Class Training Validation 

COVID-19 Positive 138 patients 
3,385 images 

34 patients 
860 images 

COVID-19 Negative 203 patients 
5,305 images 

51 patients 
1,337 images 
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*MosMed CT volumes have four dimensions as length × width × depth × channels (red, 

blue, and green) and have the COVID-19 positive or negative physician-provided label for each 

CT volume.  

Almost all the CT volumes in MosMedData have multiple slices and most images have 30 

or more slices with a maximum of 64 slices per patient. Figure 3.3 shows the first 40 slices from 

a CT volume from the MosMedData. 

 
Figure 3.3: First 40 slices from a CT volume (MosMedData) 

 
Table 3.4 shows a comparison of the UCSD-AI4H and the MosMed datasets based on 

imaging data format, type, and quantity. 

Table 3.4: Comparison of UCSD and MosMedData included in our research. 

UCSD-AI4H MosMed 

Individual .png images CT volume data in .nii format  

up to 16 CT slices / patient 1 CT volume with up to 64 slices / patient 

Used entire dataset Randomly sampled from this dataset 

216 COVID-19 positive patients 172 COVID-19 positive patients 

278 COVID-19 negative patients 254 COVID-19 negative patients 

UCSD CT slices  .png or .jpg  length × width × 
channel (red, blue, and green) 

MosMed CT volumes  .nii  length × width × 
depth × channel (red, blue, green) 
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3.3 Pre-Processing and Data Augmentation 

3.3.1 Pre-Processing 

The preprocessing was done on the entire dataset before feeding the data for 

classification. The images were normalized to have pixel values ranging from 0 to 255 to ensure 

that the images have adequate contrast as shown in Figure 3.4.  

 
Figure 3.4: Normalization of CT Image 

 
For the UCSD-AI4H dataset, images were resized to 224×224. For the MosMed dataset, 

pre-processing also included rotation of the volumes by 90 degrees as shown in Figure 19 because 

the data had the left lung and right lung arranged vertically. This rotation helped correct the 

orientation with the left and right lung placed horizontally side-by-side as shown in Figure 3.5. 

Then, the data was resized to get an image width, height, and depth of 224×224×64, and 

128×128×64 for another experiment.  

 
Figure 3.5: Rotation of the CT volume by 90 degrees on MosMedData [24] 
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3.3.2 Data Augmentation 

Deep neural network approaches using convolutional neural networks exhibit great 

performance, but require a large, labeled training dataset. Data Augmentation effectively makes 

the dataset larger and more varied to reliably train a deeper model with a higher number of 

parameters. Using data augmentation, the model becomes more reliable and robust to noise and 

shows a superior performance as shown in Figure 3.6.  

 
Figure 3.6: How data augmentation helps 

 
With Data Augmentation for CoviNet, we increased the number of images by seven times, 

and increased the variety of images to enhance learning that is not overfitted to training. The 

‘Image Data Generator’ library was used. The various augmentations applied were: 

• Zoom factor of 0.2 

• Rotation of +/- 15 degrees 

• Horizontal shift of 0.1 

• Vertical shift of 0.1 

• Shear range of 0.2 

• Fill mode of nearest 

Then, image augmentation was done with a zoom factor of 0.2, a rotation of +/- 15 degrees, a 

horizontal shift of 0.1, a vertical shift of 0.1, a shear range of 0.2, and nearest fill mode. This image 

augmentation helped increase the number of images and a variety of images enhance learning 

and help the model generalize better and not be overfitted to the training dataset. 
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3.4 Implementation of CoviNet 

CoviNet was implemented in ‘jupyter-notebook’ using python’s ‘tensorflow’, ‘keras’, and 

other libraries [133] [134] [135] [137]. The pre-processing of the data was done using the 

‘nibabel’ library for medical image processing which can read the CT volume data provided in .nii 

format [138]. Note that the datasets UCSD-AI4H and MosMed have different file types. For UCSD-

AI4H, we have individual .png or .jpg image files as the input data with each image having the 

COVID-19 positive or negative label. For the MosMed data, the input CT volumes are .nii files, 

each of which is a sequence of image slices. The MosMed CT volumes have four dimensions as 

length × width × depth × channels (red, blue, and green) and have the COVID-19 positive or 

negative physician-provided label. This is the reason that the pre-processing for UCSD-AI4H, had 

an extra step to stitch together individual images belonging to a patient to create a CT volume 

.nii file using the ‘MIPAV’ tool [96]. For patients which had only one image in their CT data, we 

duplicated that same image five times to create a CT volume file, because CoviNet only intakes 

data in the form of CT volumes and not images. 

Next, data augmentation was performed on the entire dataset using the ‘scipy’ and 

‘ndimage’ libraries. Data augmentation included resizing, rotating by random angle measures 

from -20 to 20 degrees, and normalizing the image to show maximum contrast in lung tissue 

regions. The ‘keras’ library in ‘tensorflow’ was used to create the various custom layers including 

convolutional, activation, pooling, batch normalization, dense, dropout, and softmax layers. The 

dataset was split 80:20 for training and validation, and each patient’s images are either entirely 

in the training dataset or entirely in the validation dataset. Five-folds are used for cross-validation 

as discussed earlier. Next, we trained the proposed CoviNet from scratch on the augmented data 
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which is fed in batches. The model learns the features over each successive batch by minimizing 

the binary cross-entropy loss between the training image labels and predictions during 

training/transfer learning which is defined in Eq. 3.1. The batch size selected is 30 images for all 

models, except CoviNet whose batch size is selected as 2 CT volumes. One full iteration over all 

batches covering the entire dataset makes for one training epoch, and the model trains over 

several epochs. Early stopping is invoked if the validation accuracy does not improve over the last 

five epochs.  

Binary Cross-Entropy Loss Function = −∑ log 𝑒𝑒𝑦𝑦𝑖𝑖,𝑛𝑛

∑ 𝑒𝑒𝑦𝑦𝑗𝑗,𝑛𝑛2
𝑗𝑗=1

2
𝑛𝑛=1  (Eq. 3.1) 

In each of the four 3D convolutional layers, we chose the activation function as RELU 

because it is computationally less expensive. For the final fully connected softmax layer, we chose 

a sigmoid activation function as defined in Eq. 3.2 so that the model outputs the predicted 

probability of being COVID-19 positive along with the binary classification category for each 

input. 

Sigmoid Activation Function = 𝑒𝑒𝑦𝑦𝑖𝑖
∑ 𝑒𝑒𝑦𝑦𝑗𝑗2
𝑗𝑗=1

 (Eq. 3.2) 

The model compares the physician-provided ground truth labels against the predictions 

and the binary cross-entropy loss is minimized during training via backpropagation. Finally, the 

five-fold cross-validation is performed and the average of the cross-validation performance 

across the five folds is reported for both datasets. Two separate CoviNet models were trained 

and validated for the UCSD-AI4H and MosMed datasets, respectively. On the UCSD-AI4H dataset, 

CoviNet takes 10 minutes for pre-processing and data augmentation, and 25 minutes to train for 

each fold. Correspondingly, on the MosMed dataset, CoviNet takes 1 hour for pre-processing and 
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data augmentation, and 67 minutes to train for each fold.  

3.5 CoviNet Enhanced: Our Improved Model for COVID-19 Classification 

We first proposed the CoviNet, a 3D CNN for COVID-19 classification from lung CT in the 

initial draft of the thesis. After that, we improved the CoviNet using texture analysis in a hybrid 

approach using 3D CNN and texture features in an ensemble classifier approach named as 

CoviNet Enhanced.  

3.5.1 CoviNet Enhanced Model  

This ensemble classifier combines the outputs of the 3D deep convolutional neural 

network trained from scratch on the original CT images and Leung-Malik texture feature inputs-

based Support Vector machine models.  

This 3D CNN and texture analysis-based hybrid approach shows a superior performance 

than our original CoviNet. The ensemble of CNNs and SVMs help the model perform better 

because the CNNs and SVMs are complementary approaches. 

We use a conditional majority voting approach for classification. For cases where the 

original 3D CNN predictions have probability between 46% and 54%, then the model uses the 

Leung Malik Texture-features’ SVM model predictions along with 3D CNN via majority voting to 

make the final classification. 

Our approach consists of five steps. 

(1) 3D CNN  

The 3D CNN having four convolutional layers is trained from scratch on the augmented 

CT data with early stopping is invoked if the validation accuracy does not improve over the last 
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five epochs.  

(2) Feature Extraction  

Leung-Malik texture features [130] are extracted. The filters used are shown in Figure 3.7. 

 
Figure 3.7: LM filter bank with 48 filters 

 
For each image, the 48 Leung-Malik filters are convolved over the entire input image to 

extract 48 images, once for each Leung-Malik filter for each original CT image. The Leung-Malik 

features have textural, shape and intensity-based features. The first and second derivatives of 

Gaussian in different orientations and scales have nearly all black pixels since lungs do not have 

elongated objects which help predict COVID-19. The features which can identify the ground glass 

opacities and consolidations will be suited for our work. The 12 Laplacian of Gaussian filters show 

textural informational features, in that these could possibly be reliable features for COVID-19 

classification. We show these 12 Laplacian of Gaussian features in Figure 3.8. 

 
Figure 3.8: LM filter bank with the 12 Laplacian of Gaussian filters (LM 37 through LM48) 
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(3) Feature Selection via SVM models on Leung-Malik texture features 

We create separate SVM models taking one feature at a time for all the 12 Laplacian of 

Gaussian Leung-Malik texture filters. Then, final feature selection is done to select the two top 

performing Leung-Malik texture features. The selected top-performing features are LM37 and 

LM41 and are shown in Figure 3.9.  

 
Figure 3.9: Leung-Malik features: (a) LM41, (b) LM37 

 

(4) SVM Models 

The selected Leung-Malik texture features, namely the LM37 and LM41, along with the 

original image are classified via three separate Support Vector Machine classifiers. We use the 

held-out test dataset approach [133]. The 80:20 split is used for training versus testing. We used 

the numpy, matplotlib and sklearn libraries to implement our model in python via the ‘jupyter-

notebook’ application [134] [135] [136] [137].  

First the image datasets and the texture feature inputs are resized to 224x224. The 

COVID-19 CT images in .jpg format with COVID-19 positive or negative physician-provided labels 

are fed into the first SVM model. The Leung-Malik feature LM41 is used to build the second SVM 

model. The Leung Malik feature LM37 is used to build the third SVM model. For the SVM, we 

perform a grid search for the parameter values of 'C' of 1, 10, 100, 1000, with a linear kernel for 
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efficiency, and with gamma values of 0.001 and 0.0001 with the Radial Basis Function kernel. We 

then get the predicted class for each image in the test dataset. This is repeated over the five folds. 

(5) Ensemble of 3D CNNs and SVMs 

Finally, we use conditional majority voting to combine the predicted outputs of the 3D 

CNN with the three support vector machines. This gives the final predicted classification of 

COVID-19 positive or Covid-10 negatives. The model performance is evaluated based on 

comparing this final prediction with the ground truth labels. 

The detailed architecture of CoviNet Enhanced is shown in Figure 3.10. 

 
Figure 3.10: Ensemble classifier of 3D CNNs and Support Vector Machines based on texture features. 

 

3.5.2 Implementation of CoviNet Enhanced 

CoviNet Enhanced was implemented in ‘jupyter-notebook’ using python’s ‘tensorflow’, 

‘keras’, and other libraries [133] [134] [135] [136] [137]. The pre-processing of the data was done 

using the ‘nibabel’ library for medical image processing which can read the CT volume data 

provided in .nii format [138]. Data augmentation was performed on the entire dataset using the 
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‘scipy’ and ‘ndimage’ libraries. The dataset was split 80:20 for training and validation, and each 

patient’s images are either entirely in the training dataset or entirely in the validation dataset. 

Five-folds are used for cross-validation as discussed earlier. 

We trained and evaluated our model’s performance on UCSD-AI4H and MosMed lung CT 

datasets described in Tables 3.5 and 3.6. 

Table 3.5: Patient and Image counts in Dataset 1:UCSD-AI4H dataset [23] 

Class Training Validation 

COVID-19 Positive 172 patients 
279 images 

41 patients 
70 images 

COVID-19 Negative 140 patients 
317 images 

31 patients 
80 images 

 

Table 3.6: Patient and Image counts in Dataset 2: MosMedData [24] 

Class Training Validation 

COVID-19 Positive 138 patients 
3,385 images 

34 patients 
860 images 

COVID-19 Negative 203 patients 
5,305 images 

51 patients 
1,337 images 

 

3.5.3 Comparison between CoviNet and CoviNet Enhanced 

The approach comparison between CoviNet and CoviNet Enhanced is shown in Table 3.7. 

Table 3.7: Approach Comparison between CoviNet and CoviNet Enhanced 

 CoviNet CoviNet Enhanced 
Approach 3D CNN 3D CNN + Texture Analysis 

Classifier 3D CNN on 
original CT 

Ensemble classifier comprising: 
3D CNN on original CT 
SVM on original CT 
SVM on LM filter 37 
SVM on LM filter 41 
For cases where the original image CNN predictions have probability 
between 46% and 54%, then the model uses the Leung Malik Texture-
features with majority voting to make the final classification. 
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The performance results comparison of CoviNet and CoviNet Enhanced are shown in 

Table 3.8. 

Table 3.8: Performance Comparison between CoviNet and CoviNet Enhanced 

Model/Data Accuracy Precision Sensitivity Specificity F1-score MCC 

CoviNet/UCSD-
AI4H 75.0% 68.7% 91.7% 58.3% 0.786 0.530 

CoviNet/ 
MosMedData 94.1% 89.2% 97.1% 92.2% 0.930 0.882 

CoviNet Enhanced/ 
UCSD-AI4H 92.2% 93.0% 93.0% 91.2% 0.930 0.842 

CoviNet Enhanced/ 
MosMedData 96.4% 94.3% 97.1% 95.9% 0.957 0.926 

 

3.6 Implementation of Others 

We implement several ImageNet pre-trained classifiers such as DenseNet169, VGG16, 

ResNet-50, InceptionV3, and VGG19 which can be found in [12, 16]. 

Each of these models comprises two parts: a convolutional base and a classifier. The 

convolutional base has stacks of convolutional and pooling layers in varying configurations to 

generate deep features from the images. Whereas the classifier classifies the images based on 

the extracted features from the convolutional base. For our implementations for each of these 

models, we retained the convolutional base and removed the classifier part of the pre-trained 

ImageNet and replaced it with our classifier consisting of the dense layer with 1000 neurons, a 

dropout layer, another dense layer with 500 neurons, and finally a softmax layer which outputs 

the predicted probability of being COVID-19 positive or negative for each input image. 

The first step is pre-processing and data augmentation on the entire dataset. We then 

performed an 80:20 split for training and cross-validation, and each patient’s images are all either 
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solely in the training dataset or in the validation dataset as discussed earlier. Next, all the base 

convolutional ImageNet pre-trained weights were kept frozen and only the last four classification 

layer weights were kept unfrozen to facilitate transfer learning on the COVID-19 datasets. The 

models pre-trained on ImageNet were first loaded and transfer learning with COVID-19 datasets 

on the final four layers (two dense layers, one dropout, and one softmax layer) of the network is 

done.  

Next, the classifiers output the predicted probability of the input being COVID-19 positive 

or negative. The physician-provided ground truth labels are compared against the predictions 

and the validation dataset loss is minimized during training. Finally, five-fold cross-validation and 

the average of the cross-validation performance across the five folds are reported for each of the 

5 models for both datasets.  

During transfer learning, the weights of the pre-trained ImageNet are kept frozen so that 

only the last four classification layers will be trained on the COVID-19 dataset. The RMSprop 

optimizer is used, and validation accuracy is maximized during training. This work will utilize the 

supervised learning framework with the radiologist-provided labels included in both open-source 

datasets: UCSD-AI4H and MosMed. The number of epochs in each model varied with the upper 

limit of 100 since early stopping was done when validation accuracy stopped improving over five 

successive epochs. The model parameters chosen were the batch size of 30, the learning rate of 

0.001, a dropout factor of 0.3 in the dropout layer, and the binary cross-entropy loss function. 

In this section, we assess the effectiveness of the proposed CoviNet model in classifying 

COVID-19 positive cases on two selected open-source datasets. All models were implemented in 

‘python’ and ‘jupyter-notebook’ using various machine learning libraries including ‘keras’, ‘sci-kit 
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learn’, ‘nibabel’ and ‘matplotlib’ [133] [134] [135] [136] [137] [138]. The machine used was 

Intel(R) Xeon(R) W-10885M CPU @ 2.40GHz, 2400 MHz, 8 Core(s), 16 Logical Processor(s), NVIDIA 

Quadro RTX 5000 with 128GB RAM. 

3.6.1 DenseNet 

DenseNet was first proposed in 2017 by Huang et al. [46]. It comprises dense blocks, 

followed by convolutional layers with batch normalization and RELU activation function. Figure 

3.11 shows a 5-layer dense block having a growth rate of k=4 [46]. Each layer receives input from 

all the preceding layers’ feature-maps. The DenseNet comprises densely connected CNN layers, 

in a dense block with the outputs of each layer connected with all descendant layers [86]. Due to 

the dense connectivity between the layers, it is termed as DenseNet. Network parameters are 

reduced dramatically by efficient utilization of feature reuse.  

 
Figure 3.11: DenseNet169 architecture 

 

3.6.2 VGG Models: VGG16 and VGG19 

The Visual Geometry Group (VGG) architecture [86] comprises a few convolutional layers, 
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each of which utilizes the ReLU activation function. For classification, this network uses a softmax 

classifier in the final layer of the model. Filter size for convolutional layers is picked equal to 3x3, 

with a stride of 2 in VGG-E. VGG-11, VGG-16, and VGG-19 are three variants of the VGG-E model 

that have 11, 16, and 19 layers correspondingly. All variants of VGG architecture end with three 

FC layers. Nevertheless, the numbers of convolution layers are different; VGG-19 contains 16 

convolution layers, VGG-16 has 13 convolution layers, and VGG-11 has eight convolution layers. 

Figure 3.12 depicts the building block of the VGG network used for COVID-19 detection [30], [65]. 

 
Figure 3.12: A typical VGG architecture used for COVID-19 detection. 

 

3.6.3 Inception V3 

InceptionV3, which integrates the inception architecture with residual connections, was 

first introduced by Szegedy et al. [106]. These residual connections significantly improve training 

speed. The filter concatenation stage in Inception architecture is replaced by residual 

connections [85] and this is called the Inception-ResNet and has multiple versions. Figure 3.13 

shows the architecture of the inception layer. This is an efficient deep neural network 

architecture for computer vision. It was inspired by Arora et al.’s [112] theoretical work and Lin 

et al.’s [113]. It performed well on the ImageNet Large-Scale Visual Recognition Challenge 2014 

(ILSVRC14). The architecture decisions were based on the intuition of multi-scale processing and 

the Hebbian principle that two neurons will have stronger weights when they activate together. 
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One specific implementation of the InceptionV3 is the GoogLeNet, a 22 layers deep network. The 

dense building blocks help this become a sparser architecture with increased depth and width of 

the network without much increase in the computational complexity.  

 
Figure 3.13: The Inception layer 

 

3.6.4 ResNet 

The Residual Network (ResNet) [86] is created with various numbers of layers; 1202,152, 

101, 50, and 34. ResNet50 is one of the popular variants containing 49 convolution layers and 1 

FC layer at the end of it. The total number of MACs and weights are 3.9M and 25.5M, respectively 

[30], [84], [85]. Figure 3.14 shows a typical ResNet architecture used for COVID-19 detection [97].  

 
Figure 3.14: A typical ResNet architecture used for COVID-19 detection. 
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3.7 Metrics 

The various performance metrics to evaluate model performance are accuracy, precision, 

recall, sensitivity, specificity, F-score, and Matthew’s correlation coefficient (MCC) [22]. The 

definitions of these metrics are as follows: 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 (Eq. 3.3) 

Sensitivity / Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (Eq. 3.4) 

Specificity = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (Eq. 3.5) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (Eq. 3.6) 

F1 = 2×𝑇𝑇𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛×𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛+𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

  =  2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 (Eq. 3.7) 

MCC = 𝑇𝑇𝑇𝑇×𝑇𝑇𝑇𝑇−𝐹𝐹𝑇𝑇×𝐹𝐹𝑇𝑇
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

 (Eq. 3.8) 

where TP, TN, FP, and FN stand for COVID-19 positive patients predicted as COVID-19 positive, 

COVID-19 negative patients predicted as COVID-19 negative, COVID-19 negative patients 

predicted as COVID-19 positive, and COVID-19 positive patients predicted as COVID-19 negative, 

respectively.  

These are depicted in the confusion matrix shown in Table 3.9. 

Table 3.9: Confusion Matrix 

 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive TP FN 

Actual 
COVID-19 Negative FP TN 

 

Although F1-score is a better choice than accuracy given the imbalanced class 

distribution, F1-score does not depend on the number of true negatives (TN) and only includes 
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true positives (TP), false positives (FP) and false negatives (FN). In fact, precision, recall and the 

F1-score (which is a function of precision and recall) only consider the positive class to be the 

class we are interested in. Regardless, of the value of TN, whether 0, 1, or very large, the 

precision, recall and F1-score would remain the same. Moreover, accuracy is not a good metric 

for imbalanced datasets. 

Thus, an even more reliable metric is the Matthews correlation coefficient (MCC) or 

Pearson's phi coefficient [40]. The MCC gives a high score only if the prediction obtains good 

results in all the four confusion matrix categories (true positives, false negatives, true negatives, 

and false positives), proportionally both to the size of positive elements and the size of negative 

elements in the dataset. Thus, MCC is one of the best measurements to describe the confusion 

matrix and even with class imbalance. Intuitively, MCC treats the actual class and the predicted 

class as two binary variables and computes their true correlation coefficient. Higher values of the 

MCC will indicate a better performing model, as higher values of MCC indicate a greater 

correlation between the actual and predicted values. If the classifier is perfect, the FP=FN=0, and 

the MCC will be 1. If the classifier’s prediction is always wrong, then the TN=TP=0, and the MCC 

will be -1. If the classifier is fully random, FP=FN=TP=TN=25%, then the MCC will be 0. Note that 

the MCC is perfectly symmetric in that it weights each of the positive and negative classes equally, 

regardless of the class imbalance [22]. 

As we identify more and more COVID-19 positive patients (higher sensitivity), we also 

increase our chances of mistakenly identifying normal individuals (lower specificity) and vice 

versa. Based on purposes for which we intend to use the test results, we can establish thresholds 

for sensitivity and specificity values since there is a tradeoff between sensitivity and specificity. 
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The field of medical diagnosis is intolerant to FN (type 2 errors) i.e., a high recall or sensitivity is 

a hard constraint. To get the lowest possible type 2 error, we first need to get the highest 

sensitivity possible, and then find the best specificity corresponding to that highest sensitivity. 

Although the MCC is not derived from Sensitivity and Specificity directly, in essence, the 

MCC is weighting sensitivity and specificity equally, since it is weighting the FN and FP equally. 

However, in our case, sensitivity is more important than specificity, so we want to place more 

weight on sensitivity. Thus, we should evaluate the performance of models based not just on the 

MCC, but on both the MCC and sensitivity. 

3.8 Performance Evaluation of CoviNet and Comparison with the Other Models 

Based on the discussion in in earlier subsections of Section 3, we trained and tested the 

proposed CoviNet, CoviNet Enhanced and the other models, DenseNet169, VGG16, ResNet-50, 

InceptionV3, and VGG19 using the UCSD-AI4H dataset described in Section 3.2. Table 8 shows 

the performance comparison of the proposed CoviNet and CoviNet Enhanced classifiers 

compared with other five models. Among all 7 models, CoviNet and CoviNet Enhanced exhibited 

the highest F1-score of 0.786, and 0.930 and the MCC of 0.530, and 0.842 respectively on the 

UCSD-AI4H dataset. Further, CoviNet and CoviNet Enhanced show significantly superior 

performance than the next best model, VGG16, which had an F1-score of 0.750, and MCC of 

0.541 as indicated in Table 3.10.  

Table 3.10: Metrics for all models in our experiments using UCSD-AI4H dataset 

Model Accuracy Precision Sensitivity Specificity F1-score MCC 

DenseNet169 
[16] Shah et al. 73.1% 76.4% 67.9% 77.7% 0.702 0.481 

VGG16 
[12] Ko et al. 77.1% 76.7% 73.6% 80.1% 0.750 0.541 
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Model Accuracy Precision Sensitivity Specificity F1-score MCC 

ResNet-50 
[12] Ko et al. 57.4% 57.1% 50.7% 63.3% 0.532 0.148 

InceptionV3 
[12] Ko et al. 69.7% 67.5% 71.9% 67.8% 0.688 0.408 

VGG19 
[16] Shah et al. 74.0% 73.5% 69.7% 77.9% 0.710 0.481 

CoviNet (Ours) 75.0% 68.7% 91.7% 58.3% 0.786 0.530 

CoviNet Enhanced 
(Ours) 92.2% 93.0% 93.0% 91.2% 0.930 0.842 

 

The corresponding confusion matrices are shown in Table 3.11. In Table 3.11, the data 

counts for CoviNet represent the number of patients (since CoviNet takes volume data), and for 

all other models, the counts represent the number of images. 

Table 3.11: Confusion matrices for all models in our experiments using UCSD-AI4H dataset. (a) 
DenseNet, (b) VGG16, (c) ResNet50, (d) InceptionV3, (e) VGG19, (f) CoviNet, (g) CoviNet Enhanced. 
CoviNet reports based on number of patients and all others based on number of images. 

DenseNet Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 62 22 

Actual 
COVID-19 Negative 18 47 

(a) 

VGG16 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 51 18 

Actual 
COVID-19 Negative 16 64 

(b) 

ResNet50 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 35 34 

Actual 
COVID-19 Negative 29 50 

(c) 
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InceptionV3 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 50 20 

Actual 
COVID-19 Negative 26 54 

(d) 

VGG19 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 49 21 

Actual 
COVID-19 Negative 18 62 

(e) 

CoviNet Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 33 3 

Actual 
COVID-19 Negative 15 21 

(f) 

CoviNet Enhanced Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 40 3 

Actual 
COVID-19 Negative 3 31 

(g) 
 

Based on the discussion in Sections 3.1, 3.3, and 3.4, we trained and tested the proposed 

CoviNet, CoviNet Enhanced and the other models, DenseNet169, VGG16, ResNet-50, 

InceptionV3, and VGG19 using the MosMed dataset described in Section 3.2. Table 10 shows the 

performance comparison of the proposed CoviNet classifier compared with other models. 

Additionally, in Table 10, we also report results by Goncharov [27] who used the MosMed dataset 

also. Note that the MosMed data is organized as one CT volume per patient, we do not have any 
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concern about the same patient’s data being included concurrently in training, validation, or test 

datasets in Goncharov et al.’s study [27]. 

Table 3.12 shows the performance results on CoviNet, CoviNet Enhanced and all Other 

models on the MosMedData, and Table 3.13 shows the corresponding confusion matrices. In 

Table 3.13, the CoviNet and CoviNet Enhanced counts represent the number of patients since it 

takes volume data, and for all other models, the counts represent the image counts. Comparing 

all the nine models as shown in Table 3.12, on MosMed data, CoviNet 224×224 and CoviNet 

Enhanced exhibited the highest F1-score of 0.930, 0.957 and the MCC of 0.881, 0.927 on the 

MosMed dataset. Further, CoviNet 224×224 and CoviNet Enhanced 224x224 shows significantly 

superior performance with an F1-score of 0.930, and 0.957 and MCC of 0.881, and 0.927 than 

the next best model, Goncharov [27], which had an F1-score of 0.827, and MCC of 0.770.  

Table 3.12: Metrics for all models in our experiments and Goncharov [27] using MosMedData. 

Model Accuracy Precision Sensitivity Specificity F1-score MCC 

DenseNet169 
[16] Shah et al. 61.6% 52.2% 57.3% 64.3% 0.532 0.221 

VGG16  
[12] Ko et al. 65.2% 57.0% 52.8% 73.1% 0.541 0.268 

ResNet-50  
[12] Ko et al. 58.5% 46.5% 44.7% 67.3% 0.456 0.121 

 InceptionV3  
[12] Ko et al. 64.5% 55.9% 46.4% 76.1% 0.505 0.236 

VGG19 
[16] Shah et al. 65.6% 59.0% 51.3% 74.8% 0.528 0.278 

multitask-sp1 U-Net 
[27] Goncharov et al. 89.4% 72.1% 96.9% 86.8% 0.827 0.770 

CoviNet (Proposed) 
128×128 89.8% 89.6% 84.3% 93.4% 0.869 0.786 

CoviNet (Proposed) 
224×224 94.1% 89.2% 97.1% 92.2% 0.930 0.881 

CoviNet Enhanced (Ours) 
224x224 96.5% 94.3% 97.1% 96.1% 0.957 0.927 
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Table 3.13: Confusion Matrices for all models in our experiments and Goncharov [27] using 
MosMedData. (a) DenseNet, (b) VGG16, (c) ResNet50, (d) InceptionV3, (e) VGG19, (f) CoviNet, (g) 
CoviNet Enhanced. 

DenseNet Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 486 363 

Actual 
COVID-19 Negative 474 855 

(a) 

VGG16 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 449 400 

Actual 
COVID-19 Negative 358 970 

(b) 

ResNet50 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 379 469 

Actual 
COVID-19 Negative 435 894 

(c) 

InceptionV3 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 394 455 

Actual 
COVID-19 Negative 318 1011 

(d) 

VGG19 Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 435 414 

Actual 
COVID-19 Negative 335 994 

(e) 
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CoviNet Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 33 1 

Actual 
COVID-19 Negative 4 47 

(f) 

CoviNet Enhanced Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 33 1 

Actual 
COVID-19 Negative 2 49 

(g) 
 

The CoviNet and CoviNet Enhanced models comprise a 3-dimensional convolutional 

neural network (CNN) on three-dimensional CT volumes for COVID-19 detection. CoviNet and 

CoviNet Enhanced performed better than the other five CNNs with transfer learning since 3D 

CNNs learn not just from one frame per patient at a time but up to 64 frames of both lungs per 

patient which help provide greater clarity, detail, reduce the impact of slice-level noise and 

enable more precise 3D features to be learned. Another reason for CoviNet’s and CoviNet 

Enhanced’s superior performance is that we are training the CoviNet model from scratch. 

Another notable observation is that CoviNet’s and CoviNet Enhanced’s performance is much 

higher on MosMed than on UCSD because UCSD-AI4H dataset has fewer images and at a lower 

resolution, a lower number of slices per patient, and with a single image slice in most of the 

patients’ data.  

Finally, it is remarkable to see in Table 3.12 that the CoviNet which used 128×128 sized 

CT volume data outperforms the next highest performing model, Goncharov [27], which used 

128×160 sized CT volumes. In other words, even with lower resolution input frames, CoviNet 
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exhibits a better F1-score and MCC than Goncharov [27]. Thus, CoviNet is truly a superior model 

as compared to other recently published works. 

The Confusion Matrix for CoviNet and CoviNet Enhanced on MosMedData is shown in 

Table 3.14. CoviNet Enhanced model failed to diagnose one out of 34 COVID-19 positive patients, 

and falsely identified two patients as positive out of 51 COVID-19 negative patients. CoviNet 

showed a higher MCC, sensitivity and specificity score than those in prior published works. The 

model performs well on both Sensitivity (97.1%) and Specificity (96.1%). CoviNet Enhanced has a 

very high Sensitivity, NPV, Specificity and PPV, so it is very highly field of medical diagnosis which 

is intolerant to Type 2 errors. CoviNet Enhanced is an excellent model to rule-out disease if a 

patient tests as negative, and is suited for all populations with a low or high probability of disease. 

Table 3.14: Confusion Matrix for (a) CoviNet, (b) CoviNet Enhanced on MosMedData 

CoviNet Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 33 1 

Actual 
COVID-19 Negative 4 47 

(a) 

CoviNet Enhanced Predicted 
COVID-19 Positive 

Predicted 
COVID-19 Negative 

Actual 
COVID-19 Positive 33 1 

Actual 
COVID-19 Negative 2 49 

(b) 

The CoviNet model failed to diagnose one out of 34 COVID-19 positive patients, and 

falsely identified four patients as positive out of 51 COVID-19 negative patients. CoviNet showed 

a higher MCC, sensitivity and specificity score than those in prior published works. The model 

performs well on both Sensitivity (97.1%) and Specificity (92.2%). CoviNet has both a very high 



55 

Sensitivity and NPV, so it is well suited in the field of medical diagnosis which is intolerant to Type 

2 errors. This is indicated by its Positive Predictive Value (Precision) of 89.2%, and the Negative 

Predictive Value of 97.9%. CoviNet is an excellent model to rule-out disease if a patient tests as 

negative. It is most suited for populations in which there is a low to moderate probability of 

disease. 

3.9 Randomly Split Experiment for UCSD-AI4H 

In this experiment, we split the data randomly between the training, validation, and test 

datasets. We trained and tested all the other models, DenseNet169, VGG16, ResNet-50, 

InceptionV3, and VGG19 using the UCSD-AI4H dataset described in Section 3.2. This is done to 

prove the hypothesis that random split of data is not the correct way of doing the experiment 

and the metrics are 10%-15% higher than the metrics if the data split was patient-wise. Table 

3.15 shows the performance results of all the other models. Any given member’s image data is 

split randomly between the various data splits, allowing for data overlap between training and 

validation.  

Table 3.15: Metrics for all pre-trained models using Randomly Split UCSD-AI4H. 

Model Accuracy Precision Sensitivity Specificity F1-score MCC 

DenseNet169 
[16] Shah et al. 85.38% 87.60% 81.67% 88.68% 0.8343 0.7171 

VGG16  
[12] Ko et al. 86.32% 83.17% 89.09% 83.87% 0.8583 0.7317 

ResNet-50  
[12] Ko et al. 62.33% 62.58% 54.47% 69.27% 0.5671 0.2496 

 InceptionV3  
[12] Ko et al. 77.61% 72.16% 85.93% 70.30% 0.7820 0.5697 

VGG19 
[16] Shah et al. 82.56% 78.40% 89.95% 76.01% 0.8321 0.6722 
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Table 3.16 shows the timing performance of CoviNet on the UCSD-AI4H and MosMed. 

Table 3.16: Timing performance of CoviNet model on the UCSD-AI4H and the MosMed dataset 

 Training time (hours) 

Time UCSD-AI4H MosMed 

Pre-process & Augment Data 0.17 hour 1 hour 

Train time / Fold 0.42 hour 1.10 hour 

Total 2.25 hours 6.58 hours  
 

3.10 Comparison Studies 

3.10.1 Comparison Study 1 for CoviNet Enhanced 

CoviNet Enhanced is compared with Wang et al’s DeCovNet [92] in terms of the sensitivity 

and specificity in Table 3.17. 

Table 3.17: Comparison of CoviNet Enhanced with Wang et al’s DeCovNet 

Detail CoviNet Enhanced Wang et al.’s DeCovNet [92] 

Dataset Publicly available lung CT datasets used are 
UCSD-AI4H and MosMed.  

The lung CT dataset utilized for 
Wang et al.’s DeCovNet [92] is a 
proprietary dataset. 

Sensitivity / 
Specificity 

CoviNet Enhanced’s sensitivity is 93.0% and 
specificity is 91.2% (UCSD-AI4H dataset) and 
sensitivity is 79.1% and specificity is 82.0% 
(MosMed 1110). 

We implemented this method, 
and its sensitivity is 80.95% and 
specificity is 91.18% (UCSD-AI4H 
dataset) and sensitivity is 58.3% 
and specificity is 76.7% (MosMed 
1110). 

CNN Structure 

It is an ensemble classifier with separate 3D 
CNN and SVM models with conditional 
majority voting to make the final 
classification. It uses the Leung-Malik texture 
features along with original CTs as input data. 

It is a single 3D CNN classifier 
taking only original CTs as input 
data.  

Optimizer 

Adam optimizer 
Exponentially decaying learning rate 
Initial learning rate 0.0001 
Decay rate 0.96 
Decay Steps 100,000 

Adam optimizer 
Constant learning rate of 1x10-5 

Early Stopping 
Upper limit of 100 epochs with early stopping 
criterion based on validation accuracy not 
improving over the next 5 epochs. 

Early stopping is not used 
100 epochs 
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3.10.2 Comparison Study 2 for CoviNet Enhanced: 

CoviNet Enhanced’s performance is now compared with Imani’s Gabor filter approach 

[131] in Table 3.18.  

Table 3.18: Comparison of CoviNet Enhanced with Imani’s Gabor filter approach [131]. 

Detail CoviNet Enhanced Imani’s Gabor & Morphological filter approach 
[131] 

Dataset 

Publicly available lung CT 
datasets used are: 
UCSD-AI4H, and  
MosMed.  

Two Public datasets:  
Cohen’s COVID-19 Chest X-ray, and 
UCSD-AI4H chest CT 

Accuracy 
F-score 

UCSD-AI4H dataset:  
Accuracy: 92.2%,  
F-score: 0.930 

UCSD-AI4H dataset: 
Random Forest classifier using Gabor filters with 
convolutional processing:  
Accuracy: 76.7%,  
F-score: 0.743 
Random Forest using Morphological filter: 
Accuracy: 75.3%,  
F-score: 0.753 

CNN 
Structure 

It is an ensemble classifier 
with separate 3D CNN and 
SVM models with conditional 
majority voting to make the 
final classification. It uses the 
Leung-Malik texture features 
along with original CTs as 
input data. 

First, Shape and structural characteristics extracted 
by morphological filters, without and with CNN 
processing are classified via two independent 
classifiers: Support Vector Machine and Random 
Forest. 
Second, Textural features extracted by Gabor filters 
without and with CNN processing classified via two 
independent classifiers: Support Vector Machine 
and Random Forest. 

 

3.10.3 Additional Insights 

Our classification results on MosMed are better than what Ko et al [12] also reported. 

Note that Ko et al.'s work is doing a different problem of diagnosing COVID-19, versus non-COVID-

19 pneumonia versus normal. But we should not just look at the accuracy numbers, we need to 

look at the MCC score and the sensitivity metrics. Ko et al's model had an MCC score of 0.849 for 

Xception and 0.528 for the InceptionV3, and the Sensitivity of 78.7% for Xception and 35.6% for 



58 

InceptionV3. Our corresponding metrics for the MosMed dataset which is also a large dataset 

like Ko et al's proprietary data are much higher with a Sensitivity of 97.1% and an MCC of 0.882. 

Goncharov et al. [27] used the entire MosMed dataset for classification, we only used a 

subset of the MosMed data for CoviNet's classification. We agree that doing the analysis on a 

larger dataset will help. For this reason, we will also repeat our experiment on the entire MosMed 

data comprising 1110 patients.  

Our classification results on the MosMed dataset are having a Sensitivity of 97.1% and an 

MCC of 0.882, versus Goncharov et al's sensitivity of 96.9% and the MCC of 0.77. Goncharov et 

al's method of multitask learning was also very slow to train versus our relatively more efficient 

model. Goncharov et al. also just reported the AUC metric, but we performed a more extensive 

performance analysis and reported all performance metrics that help to understand the model 

performs better. 

We can conclude that supervised learning-based deep-learning approaches are effective 

in automating the image analysis for COVID-19 detection via CT images.  
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CHAPTER 4 

RELATED WORK: COVID-19 SEGMENTATION* 

4.1 Overview 

A systematic review of 415 published papers from January 2020 to October 2020 for the 

diagnosis or prognosis of COVID-19 from lung imaging revealed some methodical deficiencies 

[28], [29]. There is a high likelihood of duplicated images across datasets called "Frankenstein 

datasets", biases such as datasets not representative of populations, and low-quality data. 

Accurate segmentation of computerized tomography (CT) volumes is a challenge due to complex 

structures, pathological changes, individual differences in infection characteristics, and low 

image quality [34]. In disease segmentation from CT scans, an insufficient amount of data to train 

a deep model, and images having a low contrast between infections and normal tissues are some 

additional challenges [4]. Moreover, class imbalance and annotation errors also make the 

segmentation task more challenging [43]. To solve these issues and make the research 

reproducible, higher-quality datasets, heavily documented research, and external validation are 

needed.  

 
Figure 4.1: Neural network-based image segmentation 

 
* Sections 4.1 to 4.3 are reproduced from Mittal, B. & Oh, J. CoviSegNet: Covid-19 Disease Area Segmentation using 
Machine Learning Analyses for Lung Imaging. ISPA 2021, 13-15 September 2021, Zagreb, Croatia [accepted for 
publication], with permission from IEEE. 
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Figure 4.1 showcases the Basic Architecture of neural network-based image segmentation 

of the input images to generate the binary predictions of the segmented mask. 

The U-Net network, like SegNet, has the same layer counts of pooling and up-sampling 

layers, but it also has trainable deconvolution layers [86], [105]. Also, in this network, there is a 

corresponding skip connection between the up-sampling and down-sampling layers. Figure 4.2 

shows a general form of U-Net architecture used to segment the lung in COVID-19 patients. 

 
Figure 4.2: U-Net architecture 

 
The U-Net family of models (U-Net, SegNet, PSPNet and Mask-RCNN etc.) are Fully 

Convolutional Neural Networks (FCNs) and are widely used in semantic segmentation including 

medical image segmentation. The fully Convolutional Networks for Semantic Segmentation [98] 

comprise several convolutional layers. The earlier convolutional layers are the encoder and 

perform feature extraction and downsampling by aggregating the low-level features to high-level 

features. The later convolutional layers are the decoder and perform up sampling to original size 

to generate the pixel-wise map. 

https://arxiv.org/abs/1411.4038
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4.2 Related Work Review 

Shi et al. [42] reviewed the trends in artificial intelligence-based classification of COVID-

19 disease in lung imaging to help medical specialists. Accurate delineation of infections in X-ray 

and CT images is highly important for subsequent quantification of disease severity. Such 

research aims to help radiologists make clinical decisions, i.e., for disease diagnosis, tracking, and 

prognosis. They discuss the entire pipeline of medical imaging and analysis techniques involved 

with COVID-19, including image acquisition, segmentation, diagnosis, and follow-up. Mertz [39] 

explained physician-established knowledge as to which X-ray or CT abnormalities strongly 

indicate a COVID-19 diagnosis. These abnormalities are the localization of lesions lower in the 

lungs, as well as hazy areas are known as ground-glass opacities (GGOs) and consolidations (the 

amount of the lung that is filled with fluid instead of air) that are peripheral and bilateral.  

Zhou et al. [94] proposed the U-Net based segmentation network using a spatial attention 

and channel attention modules better feature representation of the rich contextual relationships. 

In addition, the focal Tversky loss is introduced to deal with small lesion segmentation. The 

obtained Dice Score and Hausdorff Distance are 83.1% and 18.8, respectively. 

Zhou et al. [95] implemented the UNet++ with the encoder and decoder sub-networks 

connected through a series of nested, dense skip pathways which reduce the semantic gap 

between the feature maps of the encoder and decoder sub-networks. Nodule segmentation in 

the low-dose CT scans of chest, nuclei segmentation in the microscopy images, liver 

segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos were 

evaluated. Figure 4.3 showcases the UNet++ model architecture. The black connections in part 

(a) indicate the original U-Net, and the green and blue connections show dense convolution 
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blocks on the skip pathways, and red connections indicate deep supervision. Part (b) shows the 

first skip pathway of U-Net++ and part (c) shows that UNet++ can be pruned at inference time, if 

trained with deep supervision. 

 
Figure 4.3: U-Net architecture (a) original with skip connections, (b) detailed analysis of the first skip 
pathway of UNet++, (c) UNet++ after pruning. 

 
Goncharov et al. [27] proposed 2D and 3D U-Net models for segmentation of COVID-19 

diseased areas including the consolidations and ground-glass opacities on CT imaging data. The 

MosMedData [49] was utilized, which is a publicly available dataset from Russia. It contains 50 

physician-labeled masks and the corresponding 50 CT volumes from 50 patients with mild 

severity of COVID-19 disease. The dice score achieved was 65.0%. This is likely because the 

dataset is highly sparse and contains only mildly affected COVID-19 patients and the proportion 

of COVID-19 lesion area to the total lung volume is very small. Amyar et al. [31] proposed a new 

multitask deep learning model to jointly identify COVID-19 patients and segment COVID-19 
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lesions from chest CT images. Three learning tasks: segmentation, classification, and 

reconstruction were jointly performed with different datasets. A common encoder was used for 

disentangled feature representation with three tasks, and two decoders, and a multi-layer 

perceptron for reconstruction, segmentation, and classification, respectively. For segmentation, 

the dice coefficient achieved was 88%. 

Anthimopoulos et al. [32] proposed a deep purely convolutional neural network for the 

semantic segmentation of Interstitial Lung Disease (ILD) patterns to detect and classify the ILD 

type from thoracic CT scans which is a challenging task even for experienced radiologists. Semi-

supervised learning was used utilizing both labeled and unlabeled image regions and achieved 

81.8% weighted (balanced) accuracy and an inference time of 58 ms.  

Cai et al. [33] quantified COVID-19 pneumonia from CT image data from 99 patients using 

two U-Net models to segment lung and COVID-19 lesions. Lung volume, lesion volume, non-

lesion lung volume (NLLV), and non-lesion lung volume percentage were quantified. Further, RF 

classifier was used to classify disease severity (Moderate, Severe, and Critical), and predict the 

length of ICU stay, oxygen support, hospital stay, sputum NAT-positive, and patient prognosis. 

The mean %NLLV in three severity groups were 92.18%, 82.94%, and 66.19% for moderate, 

severe, and critical cases, respectively. The AUC in classification of moderate vs (severe + critical) 

was 92.7%, and for severe vs critical was 92.9%. 

Chen et al. [34] proposed a novel dictionary-based approach to segment lung tumors from 

CT images. Sparse shape composition is integrated with the eigenvector space shape prior model, 

called eigenspace sparse shape composition, to reduce local shape reconstruction error caused 

by the weak and misleading appearance prior information. Furthermore, a new vertex search 
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strategy based on the gradient vector flow field is also proposed to drive the shape deformation 

to the target boundary.  

Elaziz et al. [35] proposed the MPAMFO multi-level thresholding approach for 

segmentation which combines the features of marine predators’ algorithm (MPA) and moth-

flame optimization (MFO). In this, the MFO was utilized as a local search method for MPA to avoid 

trapping at local optima. Thirteen COVID-19 images were segmented using this MPAMFO 

approach with five threshold levels on the image histograms and compared against eight other 

methods. The Peak Signal-to-Noise Ratio (PSNR) was highest for MPAMFO in 70% of images and 

the Structural Similarity Index (SSIM) was highest for MPAMFO in 61% of the images. A limitation 

is that a very small dataset with just 13 COVID-19 images and segmentation result was not 

compared against the ground truth. 

Fan et al. [4] proposed an automatic deep network for segmentation called Inf-Net. First, 

a parallel partial decoder was used to aggregate the high-level features and generate a global 

map. Then, the implicit reverse attention and explicit edge attention are utilized to model the 

boundaries and enhance the representations. Next, semi-supervised segmentation is done with 

a randomly selected propagation strategy, which only requires a few labeled images. Semi-Inf-

Net outperforms U-Net and U-Net++ and achieves a dice score of 59.7% with semi-supervised 

learning.  

Koohbanani et al. [37] proposed NuClick, a CNN-based approach to segment nuclei and 

cells in histology and cytology images. Just one click inside each object is enough for NuClick to 

yield a precise annotation. For multicellular structures such as glands, authors proposed a novel 

approach to segment the glandular boundaries requiring the annotator to provide a squiggle as 
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a guiding signal. NuClick applies to a wide range of object scales, robust against variations in the 

user input, adaptable to new domains, and delivers reliable annotations for training machine 

learning models. 

Liu et al. [38] proposed a novel U-Net with a deep residual attention module (DRANet) to 

segment and quantify ischemic stroke lesions and WMH lesions in the MRI images accurately and 

simultaneously. Accurate segmentation and quantification of ischemic stroke lesions and WMH 

lesions are important for the diagnosis and prognosis of ischemic stroke. However, radiologists 

have a difficult time distinguishing these two types of similar lesions. The dice coefficient of 

ischemic stroke segmentation is 76.39% and that of WMH segmentation is 72.83%.  

Oulefki et al. [40] performed Lung CT image segmentation which is a necessary initial step 

for lung image analysis, but segmentation is difficult due to intensity in-homogeneity, presence 

of artifacts, and closeness in the gray level of different soft tissues.  The accuracy, sensitivity, F-

measure, precision, MCC, Dice, Jacquard, and specificity are 98%, 73%, 0.71, 0.73%, 0.71, 71%, 

57%, 99% respectively. 

Saeedizadeh et al. [41] proposed TV-UNet, which is a U-Net-based model, to detect 

ground-glass regions at a pixel level. In the TV-UNet model, 2D-anisotropic total variation is 

added to the binary-cross entropy loss function which serves as the regularization term to 

promote connectivity of the segmentation map for COVID-19 pixels. A dice score of 76.4% was 

achieved on their 70:30 train versus test data split on the MedSegData [48].  

Voulodimos et al. [43] proposed two deep learning models for semantic segmentation of 

pneumonia infected area segmentation in CT images for the detection of COVID-19. The U-Net 

model has an F-score of 0.65 and the FCN model has an F-score of 0.58 on the test dataset. Wu 
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et al. [44] proposed a hybrid weak label-based approach to quantify disease severity via CT 

images based on the extent and type of pulmonary opacities. It uses both manually annotated 

pulmonary opacities from COVID-19 pneumonia and the patient-level disease-type data from the 

clinical report. First, a U-Net classifier was trained with semantic labels to segment the total 

infected region. It was used to initialize another U-Net, which was trained to segment the 

consolidations with patient-level information using the Expectation-Maximization (EM) 

algorithm. Finally, the segmentation model’s performance was evaluated on several datasets 

from institutes in Iran, Italy, South Korea, and the United States, and a dice coefficient of 63.2% 

was achieved. 

Zhang et al. [45] proposed a novel conditional generative model, called CoSinGAN for 

COVID-19 infection segmentation from a single radiological image given the annotation mask of 

the lungs and infected regions. They performed five-fold cross-validation on the COVID-19-CT-

Seg dataset (20 CT cases) and the held-out MosMed dataset (50 CT cases). Both 2D U-Net and 3D 

U-Net have outperformed COVID-19-CT-Seg-Benchmark. Hassantabar [9] performed COVID-19 

segmentation of COVID-19 affected areas in lung images using a CNN architecture with 3 

convolutional layers but only achieved a Jaccard index of 0.4. 

Safarov et al.’s [83] work in from the colonoscopy domain and they created a U-Net++ 

and DenseNet based model for segmenting polyps from two public colonoscopy datasets with 

physician-annotated binary masks for 1000 and 612 polyp images, respectively. CoviSegNet’s 

performance on the MedSeg data is better than that of Safarov et al’s A-DenseUNet. 

CoviSegNet’s dice score and IoU on MedSeg data is 93.2% and 87.3% versus A-DenseUnet’s (CVC-
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612 dataset) is 79.55% and 79.62%. Additionally, CoviSegNet’s dice score and IoU on MosMed 

data is 91.5% and 84.3% versus A-DenseUnet’s (KVASIR-SEG dataset) is 81.33% and 79.27%. 

In terms of the model architecture, the A-DenseUnet uses 164 layer DenseNet as the U-

Net++ backbone, and CoviSegNet uses the 169 layer DenseNet as the U-Net backbone. A-

DenseUnet’s skip connections connect the different depths of the U-Net and have horizontal 

dense connections and connections between each depth, whereas CoviSegNet uses same depth 

skip connections only. Both A-DenseUnet and CoviSegNet use the spatial and channel attention 

mechanisms which produces excellent results by suppressing noise and focusing on the regions 

of interest. A-DenseUnet also employed the dilated convolution as shown in Figure 4.4 to 

systematically aggregate multi-scale contextual information without losing resolution. 

 
Figure 4.4: Dilation Convolution with different dilation rates 

 
Xie et al. [88] proposed the RTSU-Net leveraging the structural relationships for 

pulmonary lobe segmentation between pulmonary lobes, vessels, airways, and the pleural wall 

by introducing a novel non-local neural network which learns the self-attention weights. RTSU-

Net was trained and validated on a cohort of 5000 subjects from the COPDGene study. 

Xie et al. [89] proposed a novel framework combining a Convolutional neural network and 

a Transformer (CoTr) for accurate 3D medical image segmentation of 11 major human organs. 

The CNN extracts the feature representations, and an efficient deformable Transformer 
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(DeTrans) models the long-range dependency on the extracted feature maps. The transformer, 

DeTrans, pays attention selectively via the deformable self-attention mechanism which reduces 

the computational complexity of the transformer. The ‘MultiAtlas Labeling Beyond the Cranial 

Vault (BCV)’ dataset covering 11 major human organs was used for validation.  

Wu et al. [87] proposed a Joint Classification and Segmentation (JCS) system to perform 

real-time and explainable COVID-19 chest CT diagnosis on chest CT images of 400 COVID-19 

patients and 350 uninfected cases. They reported an average sensitivity of 95.0% and a specificity 

of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set. They 

combined the segmentation and classification models by combining the encoder features of the 

segmentation model with the backbone features of the classification model. The loss function 

used was the sum of the standard binary cross-entropy loss and the Dice loss. 

Li et al. [79] proposed a U-net Ensemble Model for Segmentation in Histopathology 

Images. Saood et al. [108] implemented two known deep learning networks, SegNet and U-NET, 

for COVID-19 segmentation of infected and healthy lung tissue in lung CT. SegNet is characterized 

as a scene segmentation network and U-NET as a medical segmentation tool. Authors perform 

experiments on a relatively small dataset with just 100 images, and SegNet shows 0.95 mean 

accuracy in classifying infected vs. healthy tissues,  while the U-NET shows 0.91 mean accuracy 

in segmentation. 

Han et al. [109] proposed the 2.5D Perpendicular-UNet to fuse the segmentation results 

of three perpendicular 2.5D Res-UNets in the task of liver and hepatic tumor segmentation which 

reduces computational complexity of 3D models and shows improved segmentation accuracy 

than 2D models. 
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Hou et al. [110] proposed spatial partitioning, which internally distributes the input and 

output of convolutional layers across GPUs/TPUs using the Mesh-TensorFlow framework by 

training a 3D U-Net on 512 by 512 by 512 high resolution data. This overcomes the memory 

limitations of a single GPU/TPU limitation and using lower resolution cropped 3D volumes of 

256x256x64 which leads to information loss. 

Jin et al. [111] proposed a prior knowledge driven domain adaptation and a dual-domain 

enhanced self-correction learning scheme model (DASC-Net) for COVID-19 infection 

segmentation on CT images. It consists of an attention and feature domain enhanced domain 

adaptation model (AFD-DA). Enhancements are an image-level activation feature extractor with 

attention to lung abnormalities and a multi-level discrimination module for hierarchical feature 

domain alignment. 

4.3 Attention Mechanism 

Attention helps to focus the model on one or a few key elements at a time. Content-based 

soft attention is convenient, and the system learns about where to attend using backpropagation. 

Attention was first discovered in the field of Neural Machine Translation by Bahadanau et al. 

[126] and Li et al. [127] and their work helped address the vanishing gradients problem of deep 

neural networks. Attention is an internal action, as it needs a learned attention policy.  

Attention really works well for the highly sparse data seen in COVID-19 segmentation and 

detection. Some mild cases may only have less than 5% of the lung volume showing ground-glass 

opacities and to accurately segment these regions, the model should be able to learn well even 

from the highly sparse data. Mathematically, sparse data is harder to learn from as the gradients 

may not be large enough, and only occur in a small region of the images or volumes.  
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Moreover, the sequential nature of the COVID-19 images in CT volumes can be captured 

using the attention mechanism alone, without the use of Long Short-Term Memory (LSTM) 

networks or RNNs [90]. This attention approach is preferred as it is remarkably more time-

efficient than the RNNs or LSTMs. 
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CHAPTER 5 

METHODOLOGY AND EXPERIMENTS: COVID-19 SEGMENTATION* 

5.1 Proposed CoviSegNet Model 

Our proposed CoviSegNet is a novel approach for disease severity quantification of 

COVID-19. Our approach consisted of seven steps: (1) First, to enhance the U-Net, our encoder 

comprises an ImageNet-pre-trained DenseNet169 as the backbone which serves to learn the 

hierarchical features efficiently. (2) The decoder block follows and there are skip connections 

between the encoder and the decoder. (3) Thereafter, spatial and channel attention modules are 

applied, so that the model can learn to focus on the region of interest. (4) Next, transfer learning 

is applied on the encoder pre-trained DenseNet 169 block, and supervised learning from scratch 

is done for the decoder block with the skip connections and the attention modules. (5) Then, the 

pixel-wise predicted mask is generated for the whole image with each pixel outputting the 

probability of it being the COVID-19 disease-affected region. (6) Subsequently, we apply adaptive 

thresholding to get the finalized segmentation as the predicted binary mask, with white pixels 

showing COVID-19 disease-affected regions and black pixels denoting non-diseased areas. (7) 

Finally, performance evaluation is done by comparing the predicted masks with the physician-

annotated ground truth masks on the held-out test dataset.  

This is a novel approach and no previously published research in COVID-19 segmentation 

utilized the spatial-attention and channel-attention mechanism. These U-Net models are 

 
* Sections 5.1 to 5.5, 5.8, 5.9 are reproduced from Mittal, B. & Oh, J. CoviSegNet: Covid-19 Disease Area 
Segmentation using Machine Learning Analyses for Lung Imaging. ISPA 2021, 13-15 September 2021, Zagreb, Croatia 
[accepted for publication], with permission from IEEE. 



72 

implemented using a supervised learning framework on three public, and physician-annotated 

datasets. 

Our proposed CoviSegNet comprises the spatial and channel-attention-based model on 

the pre-trained DenseNet169 backbone U-Net model for COVID-19 lesions segmentation. This is 

an enhancement of the U-Net method in that it uses spatial-attention and channel-attention 

mechanisms to learn the hierarchical features of U-Net. Additionally, the attention U-Net model 

is built on an ImageNet-trained backbone, and the transfer learning paradigm is applied. This is a 

novel approach and no previously published research in COVID-19 segmentation utilized the 

spatial-attention and channel-attention mechanism. Additionally, previously published research 

on COVID-19 segmentation did not use the pre-trained DenseNet169. 

The model architecture is shown in Figure 34. We will now discuss the architecture in 

detail reviewing each of the components from left to right and each of the layers in those 

components shown in Figure 5.1. 

 
Figure 5.1: The architecture of the proposed CoviSegNet model. 

 
The input data should be in individual image slices with the three channels (Red, Blue, and 

Green). Next, the encoder is the CNN part of the architecture, and it downsamples the image. In 
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general, the encoder comprises multiple sets of successive convolutional and pooling layers, with 

each successive pooling layer reducing the image height and width dimensions by a factor of 2. 

For the encoder block, any of the existing CNNs could be used, such as simple CNN with just the 

convolution and pooling layers, or VGG6, ResNet50, etc. Instead of training the encoder layers 

from scratch, ImageNet pre-trained convolutional neural networks such as DenseNet169, VGG16, 

and ResNet50 with a transfer learning paradigm are preferred. This is because the transfer 

learning strategy is expected to work well even with a limited amount of data that might be 

insufficient to train a deep model from scratch.  

Two different encoder backbones, namely, the DenseNet169 and the VGG16, pre-trained 

on ImageNet were applied to identify the best-performing model. In the DenseNet169 

architecture-based backbone, the feature maps of all preceding layers are used as inputs into 

each layer, which enables the various layers to share the collective feature maps. Each layer only 

adds only a small set of feature maps and allows the flow of information and gradients through 

the network facilitating quick training. DenseNet169 was originally proposed by Huang et. al. in 

[46]. The VGG16 architecture-based backbone utilizes same-padding in its convolution layers, 

which work better in extracting and learning the hierarchical features than the zero-padding used 

in some other models such as ResNet. These hierarchical features were used for further 

processing by the attention gates. Note that a dropout layer and a batch normalization layer is 

present after each pooling operation, to facilitate efficient training without overfitting. 

DenseNet169 is finally selected as the preferred CNN to be used as the Encoder in the 

CoviSegNet model. DenseNet comprises an initial convolutional layer, which is then connected 

to the dense block. The first dense block has 6 layers, and each of those layers is connected to all 
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the following layers in the block. After that, there is another convolutional layer, followed by the 

pooling layer. Then, there were three more such successive sets each comprising the dense block, 

convolutional layer, and pooling layer. The output of the last pooling layer from the encoder is 

then fed to the decoder block. The decoder performs the up sampling and has the layers in 

reverse order than the encoder, with the pooling layers replaced by the inverse-pooling layers 

which serve to increase the length and width by a factor of two. There are skip connections 

between the encoder and decoder, and this is what makes this a U-Net model.  

After that spatial and channel attention modules are applied which help the model focus 

on the regions of interest and learn from the highly sparse data efficiently and effectively. These 

attention gates learn the hierarchical feature representations from the decoder and encoder 

layers. This is followed by a fully connected softmax layer which outputs pixel-level probabilities 

of the image showing COVID-19 disease.  

Then, 3x3 Median filtering is done followed by adaptive thresholding to generate the 

pixel-level predicted binary mask. 

5.2 Median Filter and Adaptive Thresholding 

The various noise types of noise that affects computerized tomography images include 

speckle noise, Gaussian noise, salt, and pepper noise [115]. Such noise causes the predicted 

probability map of segmentation to also exhibit salt and pepper noise as shown in part (b) of 

Figure 5.2. 

We thus apply the median filter to remove the salt and pepper noise, followed by adaptive 

thresholding to get the final predicted binary mask. Median filtering is a widely used technique 

in image processing for noise reduction while preserving the edges. It is highly effective in 
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removing low to moderate levels of Gaussian noise, speckle noise and salt-and-pepper noise 

[116]. A 3x3 window slides over the input image, replacing each entry with the median of 

neighboring entries as shown in Figure 5.3. 

 
Figure 5.2: (a) Original CT Image, (b) Predicted probability of COVID-19 diseased area shown in black 
color, (c) Final predicted binary mask after applying a 3x3 median filter and adaptive thresholding. 

 

 
Figure 5.3: Median filter showing the 3x3 filter; the center pixel will be replaced by the median value of 
96. 

 
Otsu’s method for adaptive thresholding technique [117] assumes a bimodal image with 

clearly defined foreground and background, as we have in the sky and cloud images. The 

algorithm iteratively tests thresholds to find which one produces the minimum variance in the 

foreground and background saturation values. The feature extraction process is the same as 
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described above for the fixed thresholds; the only difference is that an optimal threshold is found 

for every image instead of for the whole set of training images. 

We first convert the RGB pixel probability image to a grayscale image. Then we apply the 

Otsu’s method for Adaptive thresholding [117] to get the unique threshold for each image. That 

image specific threshold will then be used to get the binary prediction segmentation mask. 

These enhanced U-Net model creation steps are explained in Figure 5.4. 

 
Figure 5.4: CoviSegNet, a novel enhanced U-Net for disease severity quantification of COVID-19. 
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5.3 Datasets 

Three publicly available datasets with a CT image data are selected for this research. All 

these datasets have been used in prior research studies and have many CT segmentations. The 

data in [48] and [49] was annotated by radiologists with binary pixel masks of regions of interest 

(characteristic areas of consolidation and ground-glass opacities) showing COVID-19 diseased 

areas versus non-diseased areas. 

5.3.1 MedSegData [48] 

MosMedData comprises: 

Part 1: Single CT volume with 100 slices and the corresponding ground truth masks 
showing COVID-19 diseased areas from 43 patients (more than 70% have only 1 or 2 slices 
per patient) 

Part 2: 9 CT volumes with 350 total slices in Part 2 of the dataset. 

MedSegData [48] has both normalized images with corresponding binary masks in the 

form of NIFTI-files. Part 1 of the dataset has 100 CT image slices of 43 COVID-19 positive patients’ 

CT volumes, and Part 2 of the dataset has 350 CT image slices of 9 COVID-19 positive patient’s CT 

volumes. [48] was annotated by two radiologists from Oslo, Norway for COVID-19 positive cases 

on data originally made public by SIRM (Italian Society of Medical & Interventional Radiology) 

[53].  

The Hounsfield Unit scale was used for normalization (the air was normalized to -1000 

and fat to -100), which is frequently used in volumetric CT medical images. After that, the images 

were resized and saved as a single NIFTI-file (512 x 512 x 110). The authors only shared the 

volumes for the slices that they annotated, and not the full volumes with all the annotated and 

unannotated slices. 
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The pixel-level ground truth masks have three different types of disease-affected regions, 

namely, ground-glass opacities, consolidation, and pleural effusion. The negative class is shown 

as black pixels to indicate COVID-19 disease-free regions. The pleural effusion class is shown in 

white, the consolidation class is shown in light gray, and the ground-glass opacities class is in dark 

gray. Figure 5.5 shows the CT image along with its corresponding mask. The Image and patient 

count for Covid SemiSeg dataset are shown in Table 5.1. 

 
Figure 5.5: Sample CT from the MedSegData [48] (a) a CT slice (b) its corresponding ground truth mask 
showing three diseased classes, namely, pleural effusion in white, consolidation in light gray, and 
ground-glass opacities in dark gray. 

 

Table 5.1: Dataset 1: MedSegData [48] 

Counts Training Validation Test 

Images 342 39 69 

Patients 37 5 10 
 

5.3.2 MosMedData [49] 

The MosMedData comprises 50 patients’ CT volumes with a total of 2049 CT slices and 

corresponding labeled masks. 
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MosMedData [49] has CT volume data in .nii format which contain 2049 non-normalized 

images, and masks in the form of NIFTI-files for 50 COVID-19 positive patients. [49] was 

annotated by two radiologists independently. If the raters’ contours did not align, another meta-

rater requested annotation correction. 

The pixel-level ground truth masks are binary. The negative class is shown as black pixels 

to indicate COVID-19 disease-free regions, and the positive class is shown as white pixels 

denoting both the ground-glass opacities and consolidations combined into one pixel-level label. 

Figure 5.6 shows the CT image along with its corresponding binary mask. The Image and patient 

counts for the MosMedData dataset are shown in Table 5.2. 

 
Figure 5.6: Another sample CT from the MosMedData [49] (a) a CT slice (b) its corresponding binary 
ground truth mask. 

 

Table 5.2: Dataset 2: MosMedData dataset [49] 

Counts Training Validation Test 

Images 1476 164 409 

Patients 35 5 10 

5.3.3 Covid SemiSeg [50] 

This includes: 
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• the MedSegData [48] with 100 slices and labeled masks from 43 patients, and 

• 1600 CT images of 45 patients from Cohen et al. [56] COVID-19 CT Collection dataset 
with corresponding masks.  

• Labeled via semi-supervised learning by Fan et al. [50] 

The 1600 images from COVID-19 CT Collection dataset by Cohen et al. [56] were pulled 

from various sources including but not limited to Radiopedia, SIRM and coronacases.org. These 

1600 images do not have segmented labels from by a physician, as the labels were created via 

semi-supervised learning methods by Fan et al. [50]. But, since this dataset was made public with 

the exact training and testing data split used, and several other published works also utilized this 

dataset. Hence, we chose to utilize the dataset in this current research to serve as a comparison 

with recently published work.   

The pixel-level ground truth masks are binary. The negative class is shown as black pixels 

to indicate COVID-19 disease-free regions, and the positive class is shown as white pixels 

denoting both the ground-glass opacities and consolidations combined into one pixel-level label. 

Figure 5.7 shows the CT image along with its corresponding binary mask. The Image and patient 

count for Covid SemiSeg dataset are shown in Table 5.3. 

 
Figure 5.7: Sample CT from the Covid SemiSeg [50] (a) a CT slice (b) its corresponding ground truth mask. 
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Table 5.3: Dataset 3: SemiSeg dataset [50] 

Counts Training Validation Test 

Images 1190 170 340 

Patients 62 9 17 
 

5.4 Pre-Processing 

Pre-processing is done to prepare the datasets. First, the volume data with .nii files is 

converted to slice level .jpeg using the MIPAV tool [96] and the NIfTI-Image-Converter [77]. The 

dimensions of the original volume data are N×C×H×W×D, where N is the number of images, C 

denotes the channels, H is the height of the image, W is the width of the image and D is the depth 

corresponding to all image slices for a single CT. After this conversion, the slice level dimensions 

are N×C×H×W. Note that there is a single channel for the binary mask and the red, blue, and 

green channels for a CT image.  

Then, the images and their corresponding lung mask images are loaded in batches. The 

images are rescaled to the fixed pixel spacing of 2,2, the image intensities are clipped to the fixed 

window and the input images were normalized to have pixel values ranging from (0, 1). Non-

COVID-19 images that get tagged as ‘negative’ should ideally be excluded. Note that all datasets 

we used only had COVID-19 positive patients’ data. Some slices show signs of COVID-19, but the 

physician-provided mask has all black pixels because not every slice of a positive patient will 

manifest disease. Those frames are the ‘positive without a mask showing the COVID-19 positive 

class’ frames and those frames which have the COVID-19 diseased areas are ‘positive with a mask 

showing the COVID-19 positive class.’ Both these categories will be included in training, 

validation, and test sets to mimic real-world data. While some published works discarded the 

frames with zero annotations i.e., blank annotations to make the model train better, we chose 
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not to do that because we want the model to process the real-world data which has both the 

closed and open lung frames. The pre-processing steps are shown in Figure 5.8. 

 
Figure 5.8: Pre-processing steps involved in CoviSegNet. 

 

5.4.1 Additional Pre-Processing Needed for the MedSeg Dataset 

Some of the labeled images had the pixel-level ground truth masks have three different 

types of disease-affected regions, namely, ground-glass opacities, consolidation, and pleural 

effusion. Per advice received from an expert radiologist, we omitted the pleural effusion positive 

class, and we combined the GGO and consolidation into a single positive segmentation mask. The 

rationale for leaving out the pleural effusion class is that the pleural effusion class occurs in the 

pleural cavity which is not a part of the lung; it is a space between the pleura lining of the lung 

and the chest wall. Additionally, pleural effusion is not a common symptom and is rarely seen in 

COVID-19 positive patients. Figure 5.9 shows the CT image along with the original three-class 

ground truth and the final single-class ground truth mask. 
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Figure 5.9: Sample CT from the MedSegData [48] (a) a CT slice, (b) the corresponding ground truth mask 
with three disease classes: pleural effusion (white), consolidation (light gray), GGOs (dark gray), (c) final 
ground truth mask with GGOs and consolidation in white 

 

5.5 Implementation: Proposed CoviSegNet  

As mentioned earlier, the proposed CoviSegNet is an Attention-based enhanced U-Net 

model which uses spatial-attention and channel-attention mechanisms to learn the hierarchical 

features of an enhanced U-Net. The encoder comprises an ImageNet pre-trained backbone, and 

the transfer learning paradigm is applied. This is a novel approach and no previously published 

research in COVID-19 segmentation has utilized the spatial-attention and channel-attention 

mechanism or the pre-trained DenseNet169 backbone. 

The four dense blocks used in our model comprise 6, 12, 32, 32 layers as shown earlier in 

the architecture of CoviSegNet in Figure 34. We decided to use this transfer learning strategy 

since we have a limited amount of data which is insufficient to train a deep model from scratch. 

As expected, the model exhibited a superior performance with such a pre-trained backbone. The 

approach consisted of the below detailed five steps and was implemented in Python language 

using ‘jupyter-notebook’.  

First, we imported the various libraries such as tensorflow, numpy, sci-kit learn, Keras, 
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torch, and dpipe [134]. 

Second, pre-processing is done to prepare the datasets as explained in the pre-processing 

sub-section above. Third, the dataset is split into training, validation, and test datasets and we 

ensured that there is no same member’s data overlap between the training, validation, and 

testing datasets. We use a ratio of 80:20 for training versus testing in all the experiments. Note 

that this is a held-out test dataset, and there is no patient’s image data overlap between training 

and testing. During the process of training, the system auto-generated the validation dataset with 

15% of images from training. The images from one patient are either all in training or validation 

or test. In other words, no overlap of data from a patient is allowed between the three splits.  

Fourth, our novel proposed method, the Attention U-Net model is trained on the COVID-

19 segmentation data. The ‘cuda’ (NVIDIA 11.1 cuda gpu) mode was used for faster training. The 

optimizer used was Adam. The loss function used was the binary cross-entropy with logits. The 

threshold chosen for the lung segmentation was 0.5 to generate the binary predicted mask. The 

predicted masks on the external test dataset are compared against the ground truth labels to 

report the dice score and Jaccard index.  The attention-gates help to focus the model’s attention 

on the learned hierarchical features and the final representations are passed through the final 

softmax classifier.  

Lastly, the final softmax classifier uses the sigmoid activation function and generates the 

pixel-wise predicted mask of the COVID-19 pneumonia lesion regions. The 3x3 Median filtering 

was done to regularize the predicted output and then adaptive thresholding was done to 

generate the final predicted segmentation. 

Note that for COVID-19 segmentation, the cross-validation hyperparameters were epoch 
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count of 200, number of batches per epoch of 100, and the number of samples per batch of 32. 

An early stopping criterion is used to stop training once the validation dataset loss did not reduce 

by at least 0.001 over the last five epochs. 

5.6 Proposed CoviSegNet Enhanced: Our Improved Model for COVID-19 Segmentation 

In the initial draft of the thesis, we first proposed the CoviSegNet, a COVID-19 diseased 

area (showing ground-glass opacities and consolidations) segmentation from lung CT of COVID-

19 patients. After that, we improved the CoviSegNet using an enhancement to U-Net with 

EfficientNetB7 encoder backbone [99][100][101][102]. EfficientNetB7 is an ImageNet pre-trained 

encoder which learns the hierarchical features distinguishing COVID-19 from non-COVID-19 CT. 

EfficientNets [99] use a simple and highly effective and time-efficient compound scaling all the 

dimensions of network width, depth and resolution with a stable constant coefficient. There are 

B0 to B7 variants of this model; each successively higher model from B0 to B7 is more complex 

with a higher number of parameters. We chose the EfficientNetB7 since it achieved the highest 

performance. Supervised learning is used, and all the EfficientNetB7 layers’ Image-Net pre-

trained weights are kept frozen during the learning process. Additionally, we used the Nadam 

optimizer which Nesterov Accelerated Gradient (NAG) Momentum method [103]. This method 

applies the acceleration to the parameters before computing the gradients, and then updates 

with the gradients computed with the interim parameters. This helps to avoid the exploding 

gradients which occur in deep networks. Like CoviSegNet, our CoviSegNet Enhanced U-Net model 

also has spatial and channel attention [4], [38], [94], [111]. It also has horizontal skip connections 

at each depth. We also trained and tested the proposed CoviSegNet Enhanced using three public 

physician-annotated datasets with radiologist-labeled binary masks and the corresponding 
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computerized tomography (CT) images.  

Our enhancements are: (1) First, to enhance CoviSegNet, our encoder comprises an 

ImageNet-pre-trained EfficientNetB7 as the encoder backbone which serves to learn the 

hierarchical features efficiently. (2) Second, we use an improved optimizer for training, namely, 

the Nadam optimizer.  

5.7 Implementation of CoviSegNet Enhanced  

We now explain the implementation details and architecture of CoviSegNet Enhanced. 

Our enhanced U-Net model has a highly complex encoder, the ImageNet-trained EfficientNetB7 

with 813 layers with spatial and channel attention. No previously published research in COVID-

19 segmentation utilized the EfficientNetB7 encoder backbone or the Nadam optimizer. The 

CoviSegNet Enhanced architecture is shown in Figure 5.10. The detailed architecture of the 

EfficientNetB7 encoder is shown in Figure 5.11. The Module 1, Module 2 and Module 3 from 

EfficientNetB7 are shown in Figure 5.12. 

 
Figure 5.10: Architecture of CoviSegNet Enhanced classifier for Segmentation of COVID-19 diseased 
areas. 
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Figure 5.11: Architecture of EfficientNetB7. 

 

 
Figure 5.12: EfficientNetB7’s component modules: (a) Module 1, (b) Module 2, and (c) Module 3 

 
We will now discuss the implementation in detail. First, the various libraries including 

numpy, glob, 8tensorflow, and keras are imported [133] [134]. Then, the training and validation 

image data along with the physician-annotated binary masks are normalized to have pixel values 

in range (0, 255) and are resized to 256-by-256. The data involves multiple CT slices per patient, 

and the data is input in the form of 2-dimensional .jpg images and have three channels. We then 

split the data into train, validation and test in the ratio 68:12:20.  
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Second, the pre-processed input data is fed to an ImageNet-trained EfficientNetB7 

encoder which is an 813-layer convolutional neural network that learns the hierarchical features 

efficiently. The Image-Net weights of EfficientNet are kept frozen for all the layers. The encoder 

is followed by the decoder which up-samples the data. Next, attention mechanisms in both 

spatial and channel dimensions are applied to the U-net by assigning attention gates on each up-

sampling level. In our model, we use three stacks of up-sampling and down-sampling. The 

number of filters in the convolutional layers vary from 64, 128, 256, 512 and 1024. These 

attention gates use the decoded or up-sampled tensors as query and the encoded or down-

sampled tensors as keys. Next, additive attention learning is used to get the self-attention values. 

The up-sampled tensor is concatenated with the attention gate output.  

Third, the attention gate output is fed to the final softmax layer which outputs the 

prediction probability of each pixel being a COVID-19 diseased pixel. Finally, the prediction 

probability map is median filtered followed by adaptive thresholding to generate the binary 

predicted mask. The binary predictions on the held-out test dataset are compared against the 

physician-annotated masks to evaluate the model performance using the dice score and Jaccard 

Index / IOU. 

We minimize the binary cross entropy loss between the binary predictions and the binary 

physician annotated labels during training. The Nadam optimizer’s parameters are: a learning 

rate of 0.02, beta_1 of 0.9, beta_2 of 0.999, and an epsilon of 1x10-7. The segmentation model is 

trained for up to 200 epochs with early stopping once the model loss does not improve more 

than 0.001 over the next five epochs. The batch-size is 32 and each epoch has 100 batches. The 

CoviSegNet Enhanced’s performance on various datasets is shown in Table 5.4 
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Table 5.4: CoviSegNet Enhanced’s performance on MedSeg, MosMed and SemiSeg datasets. 

Dataset - CoviSegNet Enhanced Dice Score IOU 

MedSeg 98.4% 96.9% 

MosMed 92.9% 86.7% 

SemiSeg 81.8% 69.2% 
 

Note that we tried using the EfficientNetB0 and finally chose the EfficientNetB7 as our 

enhanced model since EfficientNetB0’s dice score was lower at 85.4% versus the EfficientNetB7 

at 98.4%. 

5.7.1 Comparison of CoviSegNet and CoviSegNet Enhanced: 

The approach comparison between CoviSegNet and CoviSegNet Enhanced is shown in 

Table 5.5. 

Table 5.5: Approach comparison between CoviSegNet and CoviSegNet Enhanced 

 CoviSegNet CoviSegNet Enhanced 

Approach 
DenseNet169 ImageNet pre-trained 
encoder-based U-Net model with spatial 
and channel attention 

EfficientNetB7 [99] ImageNet pre-trained 
encoder-based U-Net model with spatial 
and channel attention 

Optimizer Adam Nadam 
 

The performance results comparison of CoviSegNet and CoviSegNet Enhanced on all three 

datasets, namely the MedSeg, MosMed and SemiSeg, are shown in Table 5.6. 

Table 5.6: CoviSegNet’s performance on MedSeg, MosMed and SemiSeg datasets. 

 CoviSegNet CoviSegNet Enhanced 

Dataset Dice Score IOU Dice Score IOU 

MedSeg 93.2% 87.3% 98.4% 96.9% 

MosMed 91.5% 84.3% 92.9% 86.7% 

SemiSeg 82.3% 70.0% 81.8% 69.2% 
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5.8 Metrics 

The metrics used for performance evaluation of the predicted segmentation masks are 

the dice score and the Intersection over Union (IoU). The Dice score is defined in Eq. 5.1: 

Dice Score = 2×𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)+(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

TP+TN
TP+TN+FP+FN

 (Eq. 5.1) 

The Jaccard Index (also known as Intersection over Union, or IoU) is defined in Eq. 5.2: 

Jaccard Index / IoU = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇)

= 𝐷𝐷𝑃𝑃𝑃𝑃𝑒𝑒 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒
(2 − D𝑃𝑃𝑃𝑃𝑒𝑒 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒)

 (Eq. 5.2) 

where TP denotes the area of overlap between the COVID-19 positive ground truth and COVID-

19 positive predicted mask, FN denotes the area of the COVID-19 positive ground truth which 

was missed in the predicted mask, and FP denotes the area of COVID-19 positive predicted mask 

which does not overlap with the ground truth. 

5.8.1 Graphical Interpretation of Dice Score and IoU interpretation 

The Dice Score is a measure of the average performance. It places equal emphasis on the 

False positives and False negatives. Figure 5.13 shows the dice score metric in graphical form. 

IOU is the worst-case performance. IoU indicates a score that is lower than the dice score. Figure 

5.14 shows the Jaccard Index / IoU metric in graphical form. 

 
Figure 5.13: Dice Score metric in graphical form 
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Figure 5.14: Jaccard Index / IoU metric in graphical form 

 

5.9 Performance Evaluation of CoviSegNet, CoviSegNet Enhanced and Comparison with the 
Other Models 
 
In this section, we assess the effectiveness of the proposed CoviSegNet, CoviSegNet 

Enhanced models in segmenting the COVID-19 diseased areas on three selected open-source CT 

datasets. All models were implemented in ‘python’ and ‘jupyter-notebook’ using various machine 

learning libraries including ‘keras’, ‘sci-kit learn’, ‘nibabel’ and ‘matplotlib’ [133] [134] [135] [136] 

[137] [138]. The machine used was Intel(R) Xeon(R) W-10885M CPU @ 2.40GHz, 2400 MHz, 8 

Core(s), 16 Logical Processor(s), NVIDIA Quadro RTX 5000 with 128GB RAM. 

Three different public datasets were used for the evaluation of CoviSegNet’s and 

CoviSegNet Enhanced’s dice score and IoU on held-out test data. We compared our proposed 

model’s results with recently published work which also utilized the same dataset for a fair 

comparison. 

5.9.1 Dataset 1 – MedSegData [48]:  

Data was split such that a given patient’s CT data was either all in training, or validation 

or test. Dataset comprises CT volumes of 52 patients with 450 image slices. The training set had 
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342 slices from 37 patients, the validation set had 39 slices from 5 patients, and the testing set 

had 69 slices from 10 patients. As shown in Table 5.7, our proposed CoviSegNet and CoviSegNet 

Enhanced models achieved the highest reported dice score of 93.2% and 98.4% respectively in 

comparison with recently published work. 

Table 5.7: Metrics for the proposed CoviSegNet, CoviSegNet Enhanced and comparable recent research 
using MedSegData [48]. 

Model Dice Score Jaccard Index / IoU 

Multitask [31] * 88.0% 78.6% 

Dilated FCN [32]* 85.1% 74.1% 

TV-UNet [41]* 76.4% 61.8% 

CoviSegNet (Ours) 93.2% 87.3% 

CoviSegNet Enhanced (Ours) 98.4% 96.9% 
 

*Note that Multitask [31], Dilated FCN [32] and TV-UNet [41] results are just being 

mentioned as is from their published work. References [31] and [41] used the same MedSegData 

[48] that we used also, so their results are a good performance comparison baseline for our 

model. Although [32] used another dataset, namely, the Interstitial Lung Disease CT imaging 

dataset, we still believe it is a comparable work since it also segments the ground-glass opacities 

and consolidations as also done in our work. 

5.9.2 Dataset 2 – MosMedData [49]:  

Data was split such that a given patient’s CT data was either all in training, or validation 

or test. The dataset comprises 50 patients’ CT volumes with a total of 2049 CT slices. The training 

set had 1476 slices from 35 patients, the validation set had 164 slices from 5 patients, and the 

testing set had 409 slices from 10 patients. Our proposed CoviSegNet and CoviSegNet Enhanced 

models achieved the highest reported dice score of 91.5% and 92.9% respectively, which is higher 
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than Goncharov et al’s [27] dice score of 65.0% on the MosMedData. These results are shown in 

Table 5.8. 

Table 5.8: Comparison of metrics for the proposed CoviSegNet, CoviSegNet Enhanced with Goncharov 
[27] using MosMedData [49]. 

Model Dice Score Jaccard Index / IoU 

Goncharov et al. 3D U-Net [27]* 65.0% 48.1% 

CoviSegNet (Proposed) 91.5% 84.3% 

CoviSegNet Enhanced (Proposed) 92.9% 86.7% 
 

*Note that Goncharov et al.’s [27] results are just being mentioned as is from their 

published work since they used the same MosMedData [49]. 

5.9.3 Dataset 3 – SemiSeg dataset [50]:  

Data was split such that a given patient’s CT data was either all in training, or validation 

or test. The dataset includes the MedSegData [48] with 100 slices and labeled masks from 43 

patients. It also includes 1600 CT images from the COVID-19 CT Collection dataset by Cohen et 

al. [56] of 45 patients with corresponding masks created via semi-supervised learning methods 

by Fan et al. [50]. The training set had 1190 slices from 62 patients, the validation set had 170 

slices from 9 patients, and the testing set had 340 slices from 17 patients. 

Table 5.9: Metrics for the proposed CoviSegNet, CoviSegNet Enhanced and comparable recent research 
using Covid SemiSeg dataset [50]. 

Model Dice Score Jaccard Index / IoU 

U-Net++ [51]* 51.8% 35.0% 

Inf-Net [4]* 68.2% 51.7% 

Semi-Inf-Net [4]* 73.9% 58.6% 

Semi-Inf-Net +FCN8s [4]* 47.4% 31.1% 

TV-UNet [41]* 80.1% 68.8% 

CoviSegNet (Proposed) 82.3% 70.0% 

CoviSegNet Enhanced (Proposed) 81.8% 69.2% 
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*Note that U-Net++ [51], Inf-Net [4], Semi-Inf-Net [4], Semi-Inf-Net +FCN8s [4], and TV-

UNet [41] results are just being reported as is from their published work since their work also 

utilized the same dataset, with the same training, and test split as provided in the SemiSeg 

dataset [50]. 

Our proposed CoviSegNet and CoviSegNet Enhanced models achieved the highest 

reported dice score of 82.3%, 81.8% as shown in Table 5.9. This is higher than the next best dice 

score of TV-UNet [41], and the other comparison studies recently published as shown in Table 

25. 

The predicted Segmentation results from the held-out test datasets are shown along with 

the CT image and its corresponding ground truth in Figure 5.15. 

 
Figure 5.15: Segmentation Result: (a) CT image, (b) CoviSegNet Prediction, (c) CoviSegNet Enhanced 
Prediction, (d) Ground Truth mask with positive class (GGOs and consolidation) in black. 
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The CoviSegNet performance on the Covid SemiSeg dataset [50] is considerably lower 

than that on other datasets. We attribute this lower performance to two reasons. First, the Covid 

SemiSeg dataset [50] has machine annotated labels which are likely less accurate and have more 

noise than physician annotated labels. Second, the images Covid SemiSeg dataset [50] are of 

lower resolution at 96 dpi, varying sizes from 250×250 to 400×400, and 8 bit versus the MosMed 

which are of resolution 96 dpi, 512×512, and 24 bit and MedSeg which have a resolution of 96 

dpi, 630×630, and 24 bit.  

On all the experiments shown in Tables 14, 15, and 16, our Attention U-Net model is the 

highest performing as measured by the dice score and the IoU. The ImageNet pre-trained 

backbone, DenseNet169 showed a much better dice score and IoU than the VGG16 for our 

Attention U-Net model. This is because the dense connections substantially reduce the number 

of parameters and so the model can train better without overfitting even with the relatively small 

datasets available in this research. In comparison, the VGG16 architecture backbone was also 

notably slower to train. Additionally, the spatial and channel attention helps the model to learn 

from the sparse data efficiently and effectively. 

5.9.4 Comparison Study: CoviSegNet Enhanced versus Safarov et al. [83]  

Table 5.10 shows the comparison of CoviSegNet Enhanced with Safarov et al’s 

colonoscopy polyp segmentation [83]. 

Table 5.10: Comparison of CoviSegNet Enhanced with Safarov et al [83] 

Detail CoviSegNet Enhanced Safarov et al. [83] 

Dataset 

Publicly available, physician annotated 
lung CT datasets: MedSeg,  
MosMed, and  
CoviSemiSeg 

Two public colonoscopy datasets 
with physician-annotated binary 
masks: 
1000 polyp images, and  
612 polyp images 
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Detail CoviSegNet Enhanced Safarov et al. [83] 

Dice Score Dice Score (On MedSeg): 
98.4% 

We implemented Safarov et al.’s 
model on MedSeg data. 
Dice Score (On MedSeg): 
93.5% 

CNN Structure 

ImageNet pre-trained EfficientNetB7 
encoder-based attention U-Net model 
with spatial and channel attention for 
COVID-19 diseased area segmentation in 
lung CT. 
813-layer EfficientNetB7 with U-Net 
backbone with attention. 

DenseNet-based attention U-
Net++ model for segmenting 
polyps. 
164-layer DenseNet as the U-
Net++ backbone with attention. 

 

5.9.5 Comparison Study: CoviSegNet Enhanced versus TV-UNet [41] 

In Table 5.11, we compare the EfficientNetB7-based Enhanced attention U-Net with 

Saeedizadeh et al.’s TV-UNet [41]. 

Table 5.11: Comparison of CoviSegNet Enhanced with Saeedizadeh et al.’s TV-UNet [41]. 

Detail CoviSegNet Enhanced TV-UNet [41] 

Dataset 

Publicly available, physician annotated 
lung CT datasets: MedSeg,  
MosMed, and  
CoviSemiSeg  

Publicly available, physician 
annotated lung CT datasets: 
MedSeg, and  
CoviSemiSeg  

Dice Score 
Dice Score:  
98.4% (on MedSeg),  
81.8% (on Semi-Seg; machine-labeled) 

Dice Score: 
76.4% (on MedSeg) 
80.1% (on Semi-Seg; machine 
labeled) 

CNN Structure 

ImageNet pre-trained EfficientNetB7 
encoder-based attention U-Net model 
with spatial and channel attention for 
COVID-19 diseased area segmentation in 
lung CT. 
813-layer EfficientNetB7 with U-Net 
backbone with attention. 
Nadam Optimizer. 

27-layer U-Net with total 
variation (TV) as loss function. 
Adam optimizer. 

 

5.9.6 Comparison Study: CoviSegNet Enhanced versus Goncharov et al. [27] 

Table 5.12 shows the comparison of CoviSegNet Enhanced (EfficientNet-based attention 

U-Net) with Goncharov et al. [27] for COVID-19 segmentation.  
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Table 5.12: Comparison of CoviSegNet Enhanced with Goncharov et al. [27] 

Detail CoviSegNet Enhanced Goncharov et al. [27] 

Dataset 

Publicly available, physician annotated lung CT 
datasets: MedSeg,  
MosMed (50 CT volumes), 
CoviSemiSeg 

Publicly available, physician 
annotated lung CT dataset: 
MosMedData[49](50 CT 
volumes) 

Dice Score Dice Score:  
92.9% (on MosMed) 

Dice Score: 
65.0% (on MosMed) 

CNN 
Structure 

ImageNet pre-trained EfficientNetB7 encoder-based 
attention U-Net model with spatial and channel 
attention for COVID-19 diseased area segmentation in 
lung CT. 
813-layer EfficientNetB7 with U-Net backbone with 
attention. 
Nadam Optimizer. 

Training from scratch 
Basic U-Net Ronneberger et 
al. [105] architecture. 
2D U-Net, and 
3D U-Net  
Stochastic Gradient Descent 
optimizer. 
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CHAPTER 6 

ABLATION STUDIES* 

6.1 In-depth Ablation Studies 

6.1.1 Ablation Study 1: CoviNet Enhanced – 3D versus 2D CNN 

Table 6.1 shows the CoviNet Enhanced’s performance on UCSD-AI4H on 3D CNN versus 

2D CNN. 

Table 6.1: CoviNet Enhanced’s performance on UCSD-AI4H on 3D CNN versus 2D CNN 

Model Accuracy Precision Sensitivity Specificity F1-score MCC 

2D CNN 77.10% 76.67% 73.64% 80.13% 0.7498 0.5409 

3D CNN 
CoviNet 

Enhanced 
92.2% 93.0% 93.0% 91.2% 0.930 0.842 

 

6.1.2 Ablation Study 2: CoviSegNet and CoviSegNet Enhanced With and Without Original 
Backbone 
 
We compare the performance of CoviSegNet and CoviSegNet Enhanced model for 

scenarios with the best performing backbone and the next best performing backbone. 

1. CoviSegNet With DenseNet – This is the ImageNet pre-trained DenseNet169 as the 
encoder backbone. This is the original CoviSegNet model whose implementation was 
discussed in Section 5.6.1. 

2. CoviSegNet Without DenseNet – In this scenario, we replace the DenseNet169 in the 
CoviSegNet model with ImageNet pre-trained VGG16. 

3. CoviSegNet Enhanced With EfficientNetB7 – This uses the ImageNet pre-trained 
EfficientNetB7 as the encoder backbone. This is the original CoviSegNet Enhanced 
model whose implementation was discussed in Section 5.6.2. 

 
* Sections 6.1 & 6.2 (Ablation Studies 2 & 3) are reproduced from Mittal, B. & Oh, J. CoviSegNet: Covid-19 Disease 
Area Segmentation using Machine Learning Analyses for Lung Imaging. ISPA 2021, 13-15 September 2021, Zagreb, 
Croatia [accepted for publication], with permission from IEEE. 
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4. CoviSegNet Enhanced Without EfficientNetB7 – In this scenario, we replace the 
EfficientNetB7 in the CoviSegNet Enhanced model with ImageNet pre-trained VGG16. 

Table 6.2 shows CoviSegNet’s performance on MedSegData [48] With DenseNet and 

Without DenseNet and CoviSegNet Enhanced’s performance on MedSegData [48] With 

EfficientNetB7 and Without EfficientNetB7. 

Table 6.2: CoviSegNet’s and CoviSegNet Enhanced’s performance on MedSegData [48] With Original 
and Different backbone. 

 
CoviSegNet 

(Original = DenseNet169) 
(Different = VGG16) 

CoviSegNet Enhanced 
(Original = EfficientNetB7) 

(Different = VGG16) 

Model Dice Score Jaccard Index / IoU Dice Score Jaccard Index / IoU 

Original Backbone 93.2% 87.3% 98.4% 96.9% 

Different Backbone 94.4% 89.3% 94.1% 88.8% 
 

6.1.3 Ablation Study 3: With and Without Attention 

We compare the the performance of ‘CoviSegNet’ and ‘CoviSegNet Enhanced’ 

segmentation models on MedSegData [48] for two scenarios: “With Attention” i.e. with spatial 

and channel attention and “Without Attention” i.e. by removing the spatial and channel attention 

mechanisms. For the “Without Attention” scenario, only the attention was removed, and 

everything else including the backbones remained unchanged. Table 6.3 shows the performance 

of CoviSegNet and CoviSegNet Enhanced on MedSegData [48] “With Attention” and “Without 

Attention.” 

Table 6.3: CoviSegNet’s and CoviSegNet Enhanced’s performance with and without attention. 

Model Dice Score Jaccard Index / IoU 

CoviSegNet With Attention 93.2% 87.3% 

CoviSegNet Without Attention 64.5% 47.6% 

CoviSegNet Enhanced With Attention 98.4% 96.9% 

CoviSegNet Enhanced Without Attention 71.8% 56.0% 
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These results demonstrate that attention helps both CoviSegNet and CoviSegNet models 

exhibit a much higher dice score, specifically an absolute increase of 28.7% and 26.6% in dice 

score respectively, than without attention. 

6.2 MosMed on CoviNet Enhanced: All Patient Data 

The CT volumes of 254 patients with normal lung tissue and the CT volumes of 856 

patients with COVID-19 positive lung tissue are utilized. Number of samples in train, validation 

and test are 755, 133 and 223. The data was split proportion was 68% : 12% : 20% for the training, 

validation and testing sets. The data split is shown in Table 6.4. This dataset is referred to as 

MosMed 1110 to distinguish it from MosMed presented earlier. 

Table 6.4: 1110 patients’ MosMed data details. 

 Train Validation Test Total Patients 

Overall 755 patients 132 patients 223 patients 1110 

COVID-19 Positive 582 patients 102 patients 172 patients 856 

COVID-19 Negative 173 patients 30 patients 51 patients 254 
 

Table 6.5 shows results on the 1110 patients’ MosMedData CT volumes for CoviNet 

Enhanced. The performance measure is on the held-out test dataset.  

Table 6.5: CoviNet Enhanced’s and Wang et al.’s DeCovNet [92] performance on 1110 patients’ MosMed 
data. 

Model Accuracy Precision Sensitivity Specificity F1-score MCC 

CoviNet Enhanced 80.8% 75.7% 79.1% 82.0% 0.774 0.608 

DeCovNet [92] 66.8% 74.1% 58.3% 76.7% 0.652 0.353 
 

6.3 CoviNet Enhanced Ablation Experiment on UCSD-AI4H with CT Volumes and With Just 
One Slice Per Patient  
 
Table 6.6 shows CoviNet Enhanced’s performance on UCSD-AI4H with CT volumes and 
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with just individual CT slices. 

Table 6.6: CoviNet Enhanced’s performance for UCSD-AI4H on CT Volumes versus single slice. 

Metric CT Volumes CT Slices 

Accuracy 92.2% 72.1% 

Precision 93.0% 100.0% 

Sensitivity 93.0% 60.0% 

Specificity 91.2% 100.0% 

F1-score 0.930 0.750 

MCC 0.842 0.559 
 

6.4 Classification Experiment with 3D Max Pooling Instead of 2D max Pooling 

CoviNet Enhanced is a 3D CNN model and uses 3D max pooling layers, 3D batch 

normalization layers and 3D convolutional layers only. The 2D max pooling was used in the 2D 

CNN, and the 3D max pooling was used in the 3D CNN (CoviNet Enhanced). Table 6.7 shows 2D 

max pooling on 2D CNN versus 3D max pooling on CoviNet Enhanced. 

Table 6.7: 2D max pooling via 2D CNN versus CoviNet Enhanced’s 3D max pooling 

Model Accuracy Precision Sensitivity Specificity F1-score MCC 

2D max pooling 
(2D CNN) 77.1% 76.7% 73.6% 80.1% 0.750 0.541 

3D max pooling  
(CoviNet Enhanced) 92.2% 93.0% 93.0% 91.2% 0.930 0.842 

 

6.5 Statistical Analysis (Confidence Interval) on 5 folds for CoviNet Enhanced 

Table 6.8 shows the statistical analysis (confidence interval) on 5 folds for CoviNet 

Enhanced on UCSD-AI4H dataset. 

Table 6.9 shows the statistical analysis (confidence interval) on 5 folds for CoviNet 

Enhanced on MosMed dataset. 
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Table 6.8: Statistical Analysis on CoviNet Enhanced’s performance on UCSD-AI4H dataset. 

Statistic Accuracy Precision Sensitivity Specificity F1-score MCC 

Mean 92.2% 93.0% 93.0% 91.2% 0.930 0.842 

95% Confidence 
Interval +/-2.51% +/-9.88% +/-7.53% +/-13.57% +/-0.02 0.07 

 

Table 6.9: Statistical Analysis on CoviNet Enhanced’s performance on MosMed dataset. 

Statistic Accuracy Precision Sensitivity Specificity F1-score MCC 

Mean 96.4% 94.3% 97.1% 95.9% 0.957 0.926 

95% Confidence 
Interval +/-1.0% +/-1.2% +/-0.5% +/-1.1% +/-0.01 +/-0.01 

 

6.6 Image-Level and Patient-Level Performance Metrics 

Note that the CoviNet Enhanced model takes only 3D CT volumes. It processes the entire 

3D volume together and makes predictions at volume only. To get image-level results, we 

provided input as a single CT slice duplicated 5 times to make volume. Table 6.10 shows the 

image-level and patient-level metrics of the CoviNet Enhanced model on the UCSD-AI4H dataset. 

Table 6.10: Image-level and patient-level metrics of the CoviNet Enhanced 

CoviNet 
Enhanced Accuracy Precision Sensitivity Specificity F1-score MCC 

Patient Level 92.2% 93.0% 93.0% 91.2% 0.930 0.842 

Image Level 72.1% 100.0% 60.0% 100.0% 0.750 0.559 
 

Table 6.11 shows the CoviSegNet Enhanced’s performance which is possible at image-

level only since we are segmenting images. 

Table 6.11: CoviSegNet’s performance at image-level for COVID-19 segmentation. 

Model Dice Score Jaccard Index / IoU 

CoviSegNet Enhanced With Attention 98.4% 96.9% 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Conclusions  

While this thesis explores the problems of disease diagnosis and segmentation, we can 

observe the general conclusion that end-to-end deep supervised learning is an excellent 

paradigm in automating the lung CT analysis for COVID-19 disease diagnosis and severity 

quantification via segmentation. Such end-to-end learning outperforms the hand-engineered 

approaches and produces superior performance results on the held-out test datasets. The 

transfer learning-based approaches perform well if only a small dataset is available, and the 

learning from scratch works better in case a large, labeled dataset is available.  

7.1.1 Classification 

In our work, deep supervised-learning-based approaches for COVID-19 diagnosis on CT 

image datasets have proven successful and achieved excellent results. This research takes a step 

closer towards the goal of minimizing human error while increasing radiologists’ productivity by 

automating the image analysis. The authors are highly thankful for the large publicly available 

labeled datasets which made this research feasible [23], [24]. For the worldwide adoption of such 

diagnosis techniques. Training from scratch via 3D Convolutional Neural Network utilizing CT 

volumes with up to 64 slices per patient showed a superior generalizability than doing transfer 

learning via deep ImageNet pre-trained models like ResNet-50. CoviNet and showed a higher F1-

score, sensitivity, and Matthew’s correlation coefficient than those of prior published works. 

CoviNet showed a higher MCC, sensitivity and specificity score than those in prior 

published works. On the MosMedData, CoviNet shows good Sensitivity of 97.06% and Specificity 
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of 92.16%. CoviNet has both a very high Sensitivity and NPV, so it is well suited in the field of 

medical diagnosis which is intolerant to Type 2 errors. It has a Positive Predictive Value (Precision) 

of 89.19% and a Negative Predictive Value of 97.92%. CoviNet is an excellent model to rule-out 

disease if a patient tests as negative and is most suited for populations in which there is a low to 

moderate probability of disease. 

We can conclude based on our research that COVID-19 diagnosis using artificial 

intelligence on Lung CT is efficient, accurate, highly sensitive in detecting early pneumonic 

changes, and helps differentiate COVID-19 from other viral pneumonia. This automatic diagnosis 

brings positive patient outcomes via early detection and patient isolation prevents disease 

spread and helps save radiologists’ time and effort. Thus, supervised learning-based deep-

learning approaches are effective in automating the image analysis for COVID-19 detection via 

CT images. 

7.1.2 Segmentation  

The diseased areas of the lungs having ground-glass opacities and consolidations can be 

quantified with excellent performance using enhanced U-Net models with spatial and channel 

attention with a pre-trained encoder backbone. Additionally, our COVID-19 segmentation using 

deep-learning-based approaches on CT image datasets produced successful results with a good 

dice score and IoU metric in comparison with recent studies. We even performed external 

dataset validation and our model generalized well and showed good performance.  

CoviSegNet’s deep-learning-based approach on CT image datasets produced successful 

results with a dice score and Jaccard index / IoU than those of prior published works. We 

performed external dataset validation and our model generalized well and showed good 
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performance. It was five times faster than training a model from scratch. 

7.2 Future Directions  

7.2.1 Classification  

For future work, semi-supervised learning methods could be leveraged to enhance model 

performance. Additionally, if available, a larger dataset with high-quality images having several 

CT-slices per patient should be leveraged. More complex problems of quantifying disease severity 

and distinguishing non-viral or bacterial pneumonia from COVID-19 also merit further research. 

This paper propels research towards developing a fully automated and efficient system for 

diagnosing COVID-19 and all lung diseases. It would greatly help to be able to run the experiments 

on multiple machines using some experimental frameworks such as Mesh Tensorflow. 

7.2.2 Segmentation  

For future work, this model performance can be further increased by leveraging semi-

supervised learning methods since we have a relatively small, labeled dataset. Additional work 

would also be needed to compute the severity scoring based on percentage lung involvement in 

each of five lung lobes for CT volumes based on medical guidelines [58], [61]. In the future, even 

after the pandemic is over, such techniques could be applied to all lung scans done for any reason 

to diagnose and prognosticate all respiratory illnesses including new viruses that may arise in the 

future [39].  

Tversky loss: The Dice metric places equal importance on False Positives and False 

Negatives. However, in medical imaging, minimizing the Type II errors or False Negatives is more 

critical than the False Positives. In segmentation, this translates to caring more about not missing 
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to diagnose a diseased area, even at the cost of more normal areas misdiagnosed as diseased. 

Thus, for future work on COVID-19 segmentation, an even better metric than dice score would 

be the Tversky similarity index [114] which is a generalization of the dice score, which allows for 

flexibility in weighting the False positives and False Negatives. 
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 SUPPLEMENTAL MATERIALS
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Learning Analyses for Lung Imaging, in ISPA 2021, Submitted, May 2021. 

3. Mittal B., Oh J., CoviSegNet - Ablation Studies on COVID-19 Classification and 
Segmentation using Machine Learning Analyses for Lung Imaging, in ISPA 2021, To 
be submitted by June 25, 2021. 

A.3 Challenges Overcome in this Dissertation Work: 

This project was a significant undertaking and the various issues that were overcome to 

complete this project successfully are listed below:  

1. We need to ensure that all the libraries being used are compatible and if any coding 

issues arise due to versioning, we need to resolve them by either updating the libraries installed 

or updating the coding to match the library version being used. 

2. Another challenge was coming up with an idea to convert single CT images into volumes 

since the 3D CNN used for classification only uses CT volumes. 

3. It was also a learning curve to get familiar with how to process the .nii CT volumes and 

I identified that the MIPAV tool [96] was extremely helpful in visualizing the data and converting 
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from images to volumes and vice versa. The NIfTI-Image-Converter [77] was another tool used 

for converting the .nii files to .png files. 

4. Also, we found that running the code in "GPU" mode with the NVIDIA CUDA 11.1 

installed speeded up the processing speed by nearly 8 times. 

5. The literature review was very vast due to many research publications in COVID-19 

diagnosis and severity quantification using AI techniques. From the initial screening of 4000 

papers, I finally reviewed and read around 200 papers a few times to develop a grasp of this 

entirely new subject domain. 

6. Next, a challenge was to find and select good quality datasets that were used in prior 

works from the more than 50 different public datasets available. The datasets comprised X-rays, 

ultrasound, and CT images, and we brainstormed a lot, reviewed with an expert radiologist, 

performed a lot of literature review, and then finally chose the four computerized tomography 

datasets for this research. 

7. Finally, countless experiments and techniques had to be implemented before we could 

arrive at our best-performing models. It was truly labor-intensive and time-intensive work to run 

the various machine learning algorithms with different datasets and pre-processing techniques. 

A.4 Computerized Tomography (CT): Technology Advances and Evolution 

Computerized tomography (CT) imaging or "CAT scanning" (Computerized Axial 

Tomography) produces cross-sectional images of the anatomy with multiple slices like the slices 

in a loaf of bread. The word tomography comprises two Greek words: "tomos" which means slice 

and "graphe" which means drawing. The cross-sectional images as shown in Figure A.1 help in 

disease diagnosis, triage, and prognosis [119]. 
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Figure A.1: Axial CT Image of Lung 

 
In a CT System, the patient lays in a supine position on an automated table and is moved 

through a circular opening in the CT imaging system as shown in Figure A.2.  

 
Figure A.2: Patient being scanned in CT machine. 

 
The source of x-rays rotates around the inside of the circular opening. A narrow, fan-

shaped beam of x-rays about 1-10 millimeter thick irradiates a section of the patient’s body as 

shown in Figure A.3. A CT exam will have several phases of 10 to 50 rotations each. Detectors 
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collect several ‘snapshots’ of the radiation exiting the part of the patient’s body being irradiated 

during each rotation.  

 
Figure A.3: CT Fan Beam 

 
A computer then reconstructs the individual "snapshots" into one cross-sectional image 

(slice) of the internal anatomy and tissues for each complete rotation of the x-ray source. A 

"contrast material" might be injected into the patient’s body prior to doing the scan for better 

visualization [119].  

Today’s advanced CT systems can produce not just "axial" but “spiral” scans as well. With 

spiral CT, the same examination with the same slice thickness as axial CT can be completed with 

50% greater table speed using a pitch of 1.5; this results in a 33% reduction in patient dose [121]. 

Multiple slices are imaged simultaneously at higher resolution with a lower radiation dose and 

faster time. The Electron Beam CT (EBCT) does not have a moving part involved in generating the 

individual "snapshots" which allows for a quicker image acquisition than conventional CT 

scanners [119]. 
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The first CT scanner was invented in 1967, by Sir Godfrey Hounsfield at EMI Central 

Research Laboratories using x-ray technology. Several hundred million CT scans are now done 

annually and comprise 64-320 slices with slice widths ranging from 1 to 5 mm [120]. CT is starting 

to replace radiography as the initial diagnostic exam and its use is quite widespread. However, 

the effective dose for a chest CT is approximately 100–1000 times larger than that for a 

corresponding chest x-ray examination [123]. This higher radiation exposure from CT is harmful 

to body tissues. Thus, the Food and Drug Administration (FDA) has brought awareness to reduce 

unnecessary radiation exposure from medical imaging [118], [120]. Notably, image 

reconstruction techniques have contributed to 70% - 80% radiation dose reduction over the past 

4 years [125].  

Recent advancements are faster speed of scanning taking a few seconds versus 30 

minutes, lower CT patient radiation dose, and an improved image quality. A new generation CT 

scanner called the ‘coronary CT angiogram’ scans the heart and coronary arteries in less than one 

second, with a high specificity and high sensitivity for coronary artery disease. CT perfusion is a 

disruptive technology used to diagnose ischemic stroke and cancerous tumors. Fusion of 

functional imaging such as Positron Emission Tomography (PET) with CT is a great tool that 

merges data from two different types of exams and is highly useful in cancer treatment [122]. 3D 

CT imaging and Intensity-Modulated Radiotherapy (IMRT) helps in stereotactic radiosurgery and 

for radiation targeting around sensitive structures or organs. Additionally, low radiation dose CT 

has enabled physicians to increase the quality of pediatric CT examinations, especially for cervical 

spine procedures and chest CTs. Further, 3D printing of digital CT datasets helps to improve 

medical care to assist in surgical planning and prototyping implants. In summary, CT 
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enables rapid and accurate diagnosis in emergency departments for trauma,  acute chest pain, 

or other urgent conditions [120]. 

Computer vision and deep learning are remarkably promising technologies and numerous 

tools are available and being developed to benefit the area of computerized tomography. CT 

scans are a treasure trove of information that remains untapped, and the goal is to extract more 

information from CT scans with lower radiation exposure [124]. 

A.3 Acronyms 

2D CNN Two-dimensional Convolutional Neural Network 
AE Auto-encoder 
AFS-DF Adaptive Feature Selection guided Deep Forest 
BigBiGAN Large-scale bi-directional Generative Adversarial Network 
CoviNet The model for COVID-19 diagnosis implemented in this dissertation 
CoviSegNet The model for COVID-19 segmentation implemented in this dissertation 
CPU Central Processing Unit 
CT Computerized Tomography 
CXR Chest X-ray 
CNN Convolutional Neural Network 

CUDA A deep learning framework that allows for Graphical Processing Unit 
processing and frequently used in machine learning work 

DBN Deep Belief Networks 
DL Deep Learning 
DNN Deep Neural Network 
F-score Harmonic mean of the model’s precision and recall 
GAN Generative Adversarial Network 
GGO  Ground Glass Opacity 
GPU Graphical Processing Unit 
IAVP Influenza-A Viral Pneumonia 

jpg / .jpeg Commonly used method of lossy compression for digital images. An image file 
format was standardized by the Joint Photographic Experts Group. 

KNN K Nearest Neighbors 
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LR Logistic Regression 
ML Machine Learning 
MCC  Matthew’s Correlation Coefficient 

.nii Image file format that stores image volumes frequently used in 3D medical 
imaging such as Computerized Tomography 

NMT Neural Machine Translation 
NVIDIA A company that makes Graphical Processing Units 
.png An image file format. Stands for Portable Networks Graphics  
RNN Recurrent Neural Network 
TV-UNet Total Variation U-shaped Network 
SVM Support Vector Machine 
VGG Visual Geometry Group 
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