Search Results

Biotic Factors and Temperature Tolerances via Critical Thermal Methodology in Goldfish
CTMinimum and CTMaximum were measured in 620 goldfish to determine if biotic factors, in particular starvation, condition factor and size, affect temperature tolerance. Twenty-eight days of starvation adversely affected both upper and lower temperature tolerance. Condition factor was related to upper but not lower temperature tolerance.
Evaluation of the Use of the Bivalves Ischadium recurvum Rafinesque, 1820 and Corbicula fluminea Muller, 1774 as Biological Indicators of Relative Water Quality in Terms of Growth and Upper Temperature Tolerance
Growth of mussels under laboratory conditions was examined under various food regimes in different water types and temperatures. Growth was less than would be useful as an indicator and comparisons with field exposures were of minimal value. The effects of organophosphates on bivalves were examined via toxicity tests, tissue concentration, and by controlling exposure through the use of physical constraints. Upper temperature tolerance of both bivalve species was examined with respect to different acclimation temperatures and organophosphate exposures. Deviations from control exposures occurred at some temperatures. Copper effectively lowered the mean heat coma temperatures of C. fluminea at some concentrations, however, chlorine exposures did not alter heat coma temperature.
Plankton Community Response to Dechorination of a Municipal Effluent Discharged into the Trinity River
Chorine is used by the Village Creek Waste Water Treatment Plant to kill pathogenic microorganisms prior to discharge of the effluent into the Trinity River. The residual chlorine in the river impacted aquatic life prompting the U.S. Environmental Protection Agency in December 1990 to require dechlorination using sulfur dioxide. One pre-dechlorination and four post-dechlorination assessments of phytoplankton, periphyton, and zooplankton communities were conducted by the Institute of Applied Sciences at the University of North Texas. Dechlorination had no effect on the phytoplankton community. The periphyton community exhibited a shift in species abundance with a more even distribution of organisms among taxa. No change occurred in zooplankton species abundance, however, there was a decrease in zooplankton density following dechlorination.
An Evaluation of Fish and Macroinvertebrate Response to Effluent Dechlorination in Pecan Creek
This study evaluated the effects of chlorinated effluent discharged from the City of Denton, Texas' wastewater treatment plant on Pecan Creek's fish and macroinvertebrate assemblages, and their recovery upon dechlorination. A baseline of ecological conditions was established while chlorine was present in the effluent (June 1993- October 1993), and was evaluated again after dechlorination with sulfur dioxide (October 1993-August 1994). In situ Asiatic clam and fathead minnow ambient toxicity tests, and fish and macroinvertebrate collections were used to establish this baseline for comparison to post-dechlorination results.
Interspecific Competition Between Hygrophila polysperma and Ludwigia repens, Two Species of Importance in the Comal River, Texas
Hygrophila polysperma is a plant native to Asia that has been introduced into the Comal River, TX and is thriving while Ludwigia repens, a species native to the river appears to be declining. Both plants have similar morphologies and occupy similar habitats in the river. Two plant competition experiments were conducted to examine the competitive interactions between the two species. First, an experimental design was developed in which established Ludwigia plants were 'invaded' by sprigs of Hygrophila to determine if established Ludwigia populations would be negatively impacted by invasion. The second experiment focused on establishment and growth of sprigs of each species under three competition scenarios. Results show that the continued growth of well-established Ludwigia plants was significantly depressed by the invasion of Hygrophila in comparison with those that had not been invaded. Furthermore, the growth of Hygrophila sprigs was uninhibited by the presence of Ludwigia, but the presence of Hygrophila negatively impacted the growth of Ludwigia sprigs. There was no difference in the growth of Hygrophila sprigs whether planted alone, with Ludwigia sprigs or even if planted into stands of established Ludwigia.
A Behavioral Model for Detection of Acute Stress in Bivalves
A behavioral model for acute responses in bivalves, was developed using time series analysis for use in a real-time biomonitoring unit. Stressed bivalves closed their shell and waited for the stressful conditions to pass. Baseline data showed that group behavior of fifteen bivalves was periodic, however, individuals behaved independently. Group behavior did not change over a period of 20 minutes more than 30 percent, however, following toxic exposures the group behavior changed by more than 30 percent within 20 minutes. Behavior was mathematically modeled using autoregression to compare current and past behavior. A logical alarm applied to the behavior model determined when organisms were stressed. The ability to disseminate data collected in real time via the Internet was demonstrated.
Environmental Factors Influencing Chlorophyll-a Concentrations in Lake Texoma
An analysis of algal biomass measured by chlorophyll-a concentration in Lake Texoma was performed as a part of a monitoring program to develop baseline environmental data in order to detect the potential effects of engineered changes in chloride concentrations in the reservoir. This portion of the research project focused on two main research objectives. The first objective was evaluating the effect of sampling strategy on the ability to adequately reflect standing crop estimates and trends in algal biomass. Two sampling regimes utilizing replication of three versus ten samples were applied and then analyzed using a minimum detectable difference algorithm to determine the necessary magnitude of replication to represent the variation in the metric. Chlorophyll-a distribution was analyzed for zonation patterns expected in a river-run reservoir to establish the importance of representative sampling of river, transition and main lake zones of the reservoir for management decisions and trophic characterization.
Pretreatment Optimization of Fiberglass Manufacturing Industrial Wastewater
Wastewater effluent produced in the fiberglass manufacturing industry contains a significant amount of total suspended solids. Environmental regulations require pretreatment of effluent before it is discharged to the municipal wastewater treatment plant. Chemical precipitation by coagulation and flocculation is the method of pretreatment used at the Vetrotex CertainTeed Corporation (VCT). A treatability study was conducted to determine conditions at which the VCT Wastewater Pretreatment Plant could operate to consistently achieve a total suspended solids concentration ≤ 200-mg/L. Jar tests varied pH, polymer dosage, and ferric sulfate dosage. Total suspended solids and turbidity were measured to evaluate treatment performance. The data were used to determine an optimum set of conditions under project guidelines. Of twelve polymers screened, BPL 594 was selected as the most effective polymer. For cost efficiency in the wastewater pretreatment operation, recommendations suggested that treatment chemical injection be electronically controlled according to turbidity of the treated effluent.
Comparison of Risk Assessment-Predicted Ecologically Safe Concentrations of Azinphos-Methyl and Fenvalerate to Observed Effects on Estuarine Organisms in a South Carolina Tidal Stream Receiving Agricultural Runoff
A prospective ecological risk assessment method was developed evaluating the cumulative probabilistic impact of chemical stressors to aquatic organisms. This method was developed in response to the need to evaluate the magnitude, duration and episodic nature of chemical stressors on aquatic communities under environmental exposure scenarios. The method generates a probabilistic expression of the percent of an ecosystem's species at risk from a designated chemical exposure scenario.
An Assessment of Storm Water Toxicity from the Dallas/Fort Worth Metroplex and Denton, Texas
With the advent of national storm water regulations, municipalities with populations greater than 100,000 are required to obtain National Pollutant Discharge Elimination System Permits (NPDES) for storm water discharges. In addition to the sampling required for the permit process, the City of Fort Worth contracted with the University of North Texas' Institute of Applied Sciences to conduct acute toxicity testing using Pimephales prcmelas and Ceriodaphnia dubia on storm water samples received from the Dallas/Fort Worth Metroplex. A Toxicity Identification Evaluation (TIE) was performed on four samples that exhibited acute toxicity to C. dubia. High levels of metals as well as diazinon were some of the probable toxicants found.
Optimizing Scientific and Social Attributes of Pharmaceutical Take Back Programs to Improve Public and Environmental Health
Research continues to show that pharmaceutical environmental contamination has caused adverse environmental effects, with one of the most studied effects being feminization of fish exposed to pharmaceutical endocrine disruptors. Additionally, there are also public health risks associated with pharmaceuticals because in-home reserves of medications provide opportunities for accidental poisoning and intentional medication abuse. Pharmaceutical take back programs have been seen as a remedy to these concerns; however a thorough review of peer-reviewed literature and publicly available information on these programs indicates limited research has been conducted to validate these programs as a purported solution. Furthermore, there are significant data gaps on key factors relating to take back program participants. The purpose of this dissertation was therefore to address these gaps in knowledge and ultimately determine if take back programs could actually improve public and environmental health. This was accomplished by conducting social and scientific research on a take back program called Denton Drug Disposal Day (D4). Socioeconomic, demographic, and geographic characteristics of D4 participants were investigated using surveys and geographic analysis. Impacts on public health were determined by comparing medications collected at D4 events with medications reported to the North Texas Poison Center as causing adverse drug exposures in Denton County. Impacts to environmental health were determined by monitoring hydrocodone concentrations in wastewater effluent released from Denton’s wastewater treatment plant before and after D4 events. Data collected and analyzed from the D4 events and the wastewater monitoring suggests D4 events were successful in contributing to improvements in public and environmental health; however there was insufficient evidence to prove that D4 events were exclusively responsible for these improvements. An additional interesting finding was that willingness to travel to participate in D4 events was limited to a five to six mile threshold. This geographic information, combined with other findings related to socioeconomic, …
Modeling the Relationship Between Golden Algae Blooms in Lake Texoma, Usa, Versus Nearby Land Use and Other Physical Variables
Pyrmnesium parvum, commonly known as golden algae, is an algal species that under certain circumstances releases toxins which can lead to fish kills and the death of other economically and ecologically important organisms. One of the major objectives of the study was to investigate whether a relationship exists between land use and Prymnesium parvum abundance in littoral sites of Lake Texoma, USA. Another objective was to investigate whether a relationship exists between other physical variables and counts of P. parvum. Lastly, developing a valid model that predicts P. parvum abundance was an objective of the study. Through stepwise regression, a small but highly significant amount of the variation in P. parvum counts was found to be explained by wetlands, soil erodibility and lake elevation. The developed model provides insight for potential golden algae management plans, such as maintaining wetlands and teaching land owners the relationship between soil erosivity and golden algae blooms.
A Comparison of Mercury Localization, Speciation, and Histology in Multiple Fish Species From Caddo Lake, a Fresh Water Wetland
This work explores the metabolism of mercury in liver and spleen tissue of fish from a methylmercury contaminated wetland. Wild-caught bass, catfish, bowfin and gar were collected. Macrophage centers, which are both reactive and primary germinal centers in various fish tissues, were hypothesized to be the cause of demethylation of methylmercury in fish tissue. Macrophage centers are differentially expressed in fish tissue based on phylogenetic lineage, and are found primarily in the livers of preteleostean fish and in the spleen of teleostean fish. Histology of liver and spleen was examined in both control and wild-caught fish for pathology, size and number of macrophage centers, and for localization of mercury. Total mercury was estimated in the muscle tissue of all fish by direct mercury analysis. Selenium and mercury concentrations were examined in the livers of wild-caught fish by liquid introduction inductively coupled plasma mass spectrometry (ICP-MS). Total mercury was localized in histologic sections by laser ablation ICP-MS (LA-ICP-MS). Mercury speciation was determined for inorganic and methylmercury in liver and spleen of fish by bas chromatography-cold vapor atomic fluorescence spectroscopy (GC-CVAFS). Macrophage center tissue distribution was found to be consistent with the literature, with a predominance of centers in preteleostean liver and in spleens of teleostean fish. Little evidence histopathology was found in the livers or spleens of fish examined, but differences in morphology of macrophage centers and liver tissue across species are noted. the sole sign of liver pathology noted was increased hepatic hemosiderosis in fish with high proportions of liver inorganic mercury. Inorganic mercury was found to predominate in the livers of all fish but bass. Organic mercury was found to predominate in the spleens of all fish. Mercury was found to accumulate in macrophage centers, but concentrations of mercury in this compartment were found to vary less in relation …
Ecological Significance and Underlying Mechanisms of Body Size Differentiation in White-tailed Deer
Body size varies according to nutritional availability, which is of ecological and evolutionary relevance. The purpose of this study is to test the hypothesis that differences in adult body size are realized by increasing juvenile growth rate for white-tailed deer (Odocoileus virginianus). Harvest records are used to construct growth rate estimates by empirical nonlinear curve fitting. Results are compared to those of previous models that include additional parameters. The rate of growth increases during the study period. Models that estimate multiple parameters may not work with harvest data in which estimates of these parameters are prone to error, which renders estimates from complex models too variable to detect inter-annual changes in growth rate that this simpler model captures
Effects of Layer Double Hydroxide Nanoclays on the Toxicity of Copper to Daphnia Magna
Nanoparticles may affect secondary pollutants such as copper. Layer Double Hydroxides (LDH) are synthetically produced nanoparticles that adsorb copper via cation exchange. Pretreatment of copper test solutions with LDH nanoparticles followed by filtration removal of LDH nanoparticles demonstrated the smallest LDH aggregates removed the most copper toxicity. This was due to increased surface area for cation exchange relative to larger particle aggregates. Co-exposure tests of copper chloride and clay were run to determine if smaller clay particles increased copper uptake by D. magna. Coexposure treatments had lower LC50 values compared to the filtration tests, likely as a result of additive toxicity. LDH nanoclays do reduce copper toxicity in Daphnia magna and may serve as a remediation tool.
Integrating Selective Herbicide and Native Plant Restoration to Control Alternanthera philoxeroides (Alligator Weed)
Exotic invasive aquatic weeds such as alligator weed (Alternanthera philoxeroides) threaten native ecosystems by interfering with native plant communities, disrupting hydrology, and diminishing water quality. Development of new tools to combat invaders is important for the well being of these sensitive areas. Integrated pest management offers managers an approach that combines multiple control methods for better control than any one method used exclusively. In a greenhouse and field study, we tested the effects of selective herbicide application frequency, native competitor plant introduction, and their integration on alligator weed. In the greenhouse study, alligator weed shoot, root, and total biomass were reduced with one herbicide application, and further reduced with two. Alligator weed cumulative stem length and shoot/root ratio was only reduced after two applications. In the greenhouse, introduction of competitors did not affect alligator weed biomass, but did affect shoot/root ratio. The interaction of competitor introduction and herbicide did not significantly influence alligator weed growth in the greenhouse study. In the field, alligator weed cover was reduced after one herbicide application, but not significantly more after a second. Introduction of competitor species had no effect on alligator weed cover, nor did the interaction of competitor species and herbicide application. This study demonstrates that triclopyr amine herbicide can reduce alligator weed biomass and cover, and that two applications are more effective than one. To integrate selective herbicides and native plant introduction successfully for alligator weed control, more research is needed on the influence competition can potentially have on alligator weed growth, and the timing of herbicide application and subsequent introduction of plants.
A Characterization Of Jackson Blue Spring, Jackson County, Florida
Jackson Blue is a first magnitude spring in the karst terrane of northeast Florida. Previous studies have identified inorganic fertilizer as the source of high nitrate levels in the spring. Agricultural land use and karst vulnerability make Jackson Blue a good model for conservation concerns. This work offers an aggregation of studies relating to the springshed, providing a valuable tool for planning and conservation efforts in the region. An analysis of nitrate levels and other water quality parameters within the springshed did not reveal significantly different values between agricultural and forested land use areas. Confounding factors include: high transmissivity in the aquifer, interspersed land use parcels, and fertilizer application in forested areas due to commercial pine stand activity.
Ultraviolet Radiation Tolerance in High Elevation Copepods from the Rocky Mountains of Colorado, USA
Copepods in high elevation lakes and ponds in Colorado are exposed to significant levels of ultraviolet radiation (UV), necessitating development of UV avoidance behavior and photoprotective physiological adaptations. The copepods are brightly pigmented due to accumulation of astaxanthin, a carotenoid which has photoprotective and antioxidant properties. Astaxanthin interacts with a crustacyanin-like protein, shifting its absorbance from 473 nm (hydrophobic free form, appears red) to 632 nm (protein-bound complex, appears blue). In six sites in Colorado, habitat-specific coloration patterns related to carotenoprotein complex have been observed. The objective of this study was to determine whether pigment accumulation or carotenoprotein expression has a greater effect on resistance to UV exposure. For each site, copepod tolerance to UV was assessed by survivorship during UV exposure trials. Average UV exposure was determined for each habitat. Astaxanthin profiles were generated for copepods in each site. Ability to withstand UV exposure during exposure trials was significantly different between color morphs (p < 0.0001). Red copepods were found to tolerate 2-fold greater levels of UVB than blue or mixed copepods. Additionally, red copepods have much higher levels of total astaxanthin than blue or mixed copepods (p < 0.0001) and receive a higher daily UV dose (p < 0.0003). Diaptomid carotenoprotein sequence is not homologous with that of other crustaceans in which crustacyanin has been characterized which prevented quantification of carotenoprotein transcript expression. Overall, diaptomid color morph may be an important indicator of UV conditions in high elevation lentic ecosystems.
Measuring Atmospheric Ozone and Nitrogen Dioxide Concentration by Differential Optical Absorption Spectroscopy
The main objective was to develop a procedure based on differential optical absorption spectroscopy (DOAS) to measure atmospheric total column of ozone, using the automated instrument developed at the University of North Texas (UNT) by Nebgen in 2006. This project also explored the ability of this instrument to provide measurements of atmospheric total column nitrogen dioxide. The instrument is located on top of UNT’s Environmental Education, Science and Technology Building. It employs a low cost spectrometer coupled with fiber optics, which are aimed at the sun to collect solar radiation. Measurements taken throughout the day with this instrument exhibited a large variability. The DOAS procedure derives total column ozone from the analysis of daily DOAS Langley plots. This plot relates the measured differential column to the airmass factor. The use of such plots is conditioned by the time the concentration of ozone remains constant. Observations of ozone are typically conducted throughout the day. Observations of total column ozone were conducted for 5 months. Values were derived from both DOAS and Nebgen’s procedure and compared to satellite data. Although differences observed from both procedures to satellite data were similar, the variability found in measurements was reduced from 70 Dobson units, with Nebgen’s procedure, to 4 Dobson units, with the DOAS procedure.A methodology to measure atmospheric nitrogen dioxide using DOAS was also investigated. Although a similar approach to ozone measurements could be applied, it was found that such measurements were limited by the amount of solar radiation collected by the instrument. Observations of nitrogen dioxide are typically conducted near sunrise or sunset, when solar radiation experiences most of the atmospheric absorption.
Effect of Rancher’s Management Philosophy, Grazing Practices, and Personal Characteristics on Sustainability Indices for North Central Texas Rangeland
To assess sustainability of privately owned rangeland, a questionnaire was used to gathered data from ranches in Cooke, Montague, Clay, Wise, Parker, and Jack counties in North Central Texas. Information evaluated included: management philosophy, economics, grazing practices, environmental condition, quality of life, and demographics. Sustainability indices were created based on economic and land health indicator variables meeting a minimum Cronbach‘s alpha coefficient (α = 0.7). Hierarchical regression analysis was used to create models explaining variance in respondents’ indices scores. Five predictors explained 36% of the variance in rangeland economic sustainability index when respondents: 1) recognized management inaction has opportunity costs affecting economic viability; 2) considered forbs a valuable source of forage for wildlife or livestock; 3) believed governmental assistance with brush control was beneficial; 4) were not absentee landowners and did not live in an urban area in Texas, and; 5) valued profit, productivity, tax issues, family issues, neighbor issues or weather issues above that of land health. Additionally, a model identified 5 predictors which explained 30% of the variance for respondents with index scores aligning with greater land health sustainability. Predictors indicated: 1) fencing cost was not an obstacle for increasing livestock distribution; 2) land rest was a component of grazing plans; 3) the Natural Resource Conservation Service was used for management information; 4) fewer acres were covered by dense brush or woodlands, and; 5) management decisions were not influenced by friends. Finally, attempts to create an index and regression analysis explaining social sustainability was abandoned, due to the likely-hood of type one errors. These findings provide a new line of evidence in assessing rangeland sustainability, supporting scientific literature concerning rangeland sustainability based on ranch level indicators. Compared to measuring parameters on small plots, the use of indices allows for studying replicated whole- ranch units using rancher insight. Use …
Soil and Forest Variation by Topography and Succession Stages in the Greenbelt Corridor, Floodplain of the Elm Fork of the Trinity River, North Texas.
The Greenbelt Corridor (GBC), located in a floodplain of the Elm Fork of the Trinity River, contains patches of bottomland forest and serves as part of Lake Lewisville’s flood control backwaters. This study examines forest structure and composition in relation to topographic position and forest stage in the GBC. Thirty two plots were surveyed within various stage classes, topographic positions, and USDA soil types. Trees were identified and measured for height and DBH. Density, basal area, and importance value for each of species was calculated. Soil and vegetation were analyzed using ANOVA, Principal Component Analysis, Canonical Correlation, Canonical Correspondence Analysis and Cluster Analysis. Tests confirmed that calcium carbonate and pH show significant differences with topographic positions but not with forest stage. Potassium shows no significant difference with soil texture class. Sand shows a strong negative correlation with moisture, organic matter, organic carbon and negative correlation with calcium carbonate and potassium. Silt shows positive correlation with moisture, organic matter, organic carbon, and calcium carbonate. Clay shows strong positive correlation with moisture, organic matter and organic carbon but negative correlations with pH. Swamp privet is dominant tree types in wetland forest. Sugarberry cedar elm, green ash and American elm are widely distributed species in the study area covering low ridges, flats, and slough. In total, density is significantly different in wetland low forest and late successional stage and basal area is significantly different in early successional stage and late successional stage. Other results show that clay is negatively correlated with American elm but positively correlated with cedar elm. Organic matter and moisture shows a strong positive correlation with cedar elm. Calcium carbonate is associated with green ash and swamp privet, sand is associated with sugarberry and red mulberry, silt and pH with cedar elm and bur oak.
Bioconcentration of Triclosan, Methyl-Triclosan, and Triclocarban in the Plants and Sediments of a Constructed Wetland
Triclosan and triclocarban are antimicrobial compounds added to a variety of consumer products that are commonly detected in waste water effluent. The focus of this study was to determine whether the bioconcentration of these compounds in wetland plants and sediments exhibited species specific and site specific differences by collecting field samples from a constructed wetland in Denton, Texas. The study showed that species-specific differences in bioconcentration exist for triclosan and triclocarban. Site-specific differences in bioconcentration were observed for triclosan and triclocarban in roots tissues and sediments. These results suggest that species selection is important for optimizing the removal of triclosan and triclocarban in constructed wetlands and raises concerns about the long term exposure of wetland ecosystems to these compounds.
Reproductive and Growth Responses of the Fathead Minnow (Pimephales Promelas) and Japanese Medaka (Oryzias Latipes) to the Synthetic Progestin, Norethindrone
A commonly prescribed contraceptive, the synthetic progestin norethindrone (NET) inhibits ovulation in humans. However, ecotoxicological data are lacking. Preliminary tests produced an LC50 for NET of > 1.0 mg/L (96-hour, fathead minnow (FHM) and medaka) and a NOEC of 242.0 µg/L, a LOEC of 485.0 µg/L (7-day, growth for FHM and medaka). Reproductive testing revealed a LOEC for fecundity of 24.1 ng/L (21 days, medaka). Further testing confirmed the LOEC of 24.1 ng/L while defining a NOEC of 4.7 ng/L (28 days, medaka). Effect of NET in medaka life-cycle exposure at concentrations exceeding 4.7 ng/L was evident. Few females were present in the 24.7 ng/L exposure concentration, with none in the 104.6 ng/L. Egg production was significantly reduced at concentrations exceeding 4.7 ng/L. Additionally, weight, condition factor and somatic indices were significantly different in males exposed to concentrations exceeding 4.7 ng/L. For fecundity and sexual differentiation; the NOEC was 4.7 ng/L, the LOEC 24.6 ng/L; growth and somatic indices, the NOEC was more appropriately 0.9 ng/L, with effect evident at 4.7 ng/L. Sexual differentiation of the F1 population was similar to the F0. A defining result of this test was development of exceptionally large ovaries in NET- exposed female medaka, perhaps indicative of a threshold limit for exposure in these fish. Results of FHM life-cycle testing were similar, establishing a NOEC for fecundity of 0.9 ng/L, a LOEC of 4.8 ng/L. NET's inhibitory effect on gonadal development was obvious; GSI NOEC for males, 4.8 ng/L, and histological examination confirmed the presence of intersex development at elevated concentrations. Normal physical development and growth were impaired, generally at concentrations exceeding 24.1 ng/L. At exposure concentrations exceeding 4.8 ng/L, external sexual confirmation of fish was difficult; LOEC for finspot development in females, 4.8 ng/L. Sexual determination of the 97.1 ng/L exposure group was …
Characterization of Triclocarban, Methyl- Triclosan, and Triclosan in Water, Sediment, and Corbicula Fluminea (Müller, 1774) Using Laboratory, in Situ, and Field Assessments
In the last decade emerging contaminants research has intensified in a bid to answer questions about fate, transport, and effects as these chemicals as they get released into the environment. The chemicals of interest were the antimicrobials; triclocarban (TCC) and triclosan (TCS), and a metabolite of triclosan, methyl triclosan (MTCS). This research was designed to answer the question: what is the fate of these chemicals once they are released from the waste water treatment plant into receiving streams. Three different assessment methods; field monitoring, in-situ experiments, and laboratory studies were used to answer the overall question. TCS, TCC, and MTCS levels were measured in surface water, sediment and the Asiatic clam Corbicula fluminea. Field studies were conducted using four sites at Pecan Creek, Denton TX. Levels of all three chemicals in clams were up to fives orders of magnitude the water concentrations but an order of magnitude lower than in sediment. Highest sediment levels of chemicals were measured in samples from the mouth of Pecan Creek (highest organic matter). TCC was the most and TCS was the least accumulated chemicals. In-situ and lab studies both indicated that uptake of these chemicals into the clams was very rapid and measurable within 24hours of exposure. The after clams were transferred into clean water most of the compounds were depurated within 14 days.
Evaluation of the Developmental Effects and Bioaccumulation Potential of Triclosan and Triclocarban Using the South African Clawed Frog, Xenopus Laevis
Triclosan (TCS) and triclocarban (TCC) are antimicrobials found in U.S. surface waters. This dissertation assessed the effects of TCS and TCC on early development and investigated their potential to bioaccumulate using Xenopus laevis as a model. The effects of TCS on metamorphosis were also investigated. For 0-week tadpoles, LC50 values for TCS and TCC were 0.87 mg/L and 4.22 mg/L, respectively, and both compounds caused a significant stunting of growth. For 4-week tadpoles, the LC50 values for TCS and TCC were 0.22 mg/L and 0.066 mg/L; and for 8-week tadpoles, the LC50 values were 0.46 mg/L and 0.13 mg/L. Both compounds accumulated in Xenopus. For TCS, wet weight bioaccumulation factors (BAFs) for 0-, 4- and 8-week old tadpoles were 23.6x, 1350x and 143x, respectively. Lipid weight BAFs were 83.5x, 19792x and 8548x. For TCC, wet weight BAFs for 0-, 4- and 8-week old tadpoles were 23.4x, 1156x and 1310x. Lipid weight BAFs were 101x, 8639x and 20942x. For the time-to-metamorphosis study, TCS showed an increase in weight and snout-vent length in all treatments. Exposed tadpoles metamorphosed approximately 10 days sooner than control tadpoles. For the hind limb study, although there was no difference in weight, snout-vent length, or hind limb length, the highest treatment was more developed compared to the control. There were no differences in tail resorption rates between the treatments and controls. At relevant concentrations, neither TCS nor TCC were lethal to Xenopus prior to metamorphosis. Exposure to relatively high doses of both compounds resulted in stunted growth, which would most likely not be evident at lower concentrations. TCS and TCC accumulated in Xenopus, indicating that the compound has the potential to bioaccumulate through trophic levels. Although TCS may increase the rate of metamorphosis in terms of developmental stage, it did not disrupt thyroid function and metamorphosis in …
Habitat Fragmentation by Land-Use Change: One-Horned Rhinoceros in Nepal and Red-Cockaded Woodpecker in Texas
This research focuses on the spatial analysis of the habitat of two vulnerable species, the one-horn rhinoceros in the grasslands of southern Nepal, and the red-cockaded woodpecker in the Piney woods of southeast Texas, in the USA. A study sites relevant for biodiversity conservation was selected in each country: Chitwan National Park in Nepal, and areas near the Big Thicket National Preserve in Texas. Land-use differs in the two study areas: the first is still undergoing agrarian development while the second is in a technological phase and undergoing urbanization processes. Satellite remote sensing images were used to derive land-cover maps by supervised classification. These maps were then processed by Geographic Information Systems methods to apply habitat models based on basic resources (food and cover) and obtain habitat suitability maps. Several landscape metrics were computed to quantify the habitat characteristics especially the composition and configuration of suitable habitat patches. Sensitivity analyses were performed as the nominal values of some of the model parameters were arbitrary. Development potential probability models were used to hypothesize changes in land-use of the second study site. Various scenarios were employed to examine the impact of development on the habitat of red-cockaded woodpecker. The method derived in this study would prove beneficial to guide management and conservation of wildlife habitats.
Hepatotoxicity of Mercury to Fish
Tissue samples from spotted gar (Lepisosteus oculatus) and largemouth bass (Micropterus salmoides) were collected from Caddo Lake. Gar and bass livers were subjected to histological investigation and color analysis. Liver color (as abs at 400 nm) was significantly correlated with total mercury in the liver (r2 = 0.57, p = 0.02) and muscle (r2 = 0.58, p = 0.01) of gar. Evidence of liver damage as lipofuscin and discoloration was found in both species but only correlated with liver mercury concentration in spotted gar. Inorganic mercury was the predominant form in gar livers. In order to determine the role of mercury speciation in fish liver damage, a laboratory feeding study was employed. Zebrafish (Danio rerio) were fed either a control (0.12 ± 0.002 µg Hg.g-1 dry wt), inorganic mercury (5.03 ± 0.309 µg Hg.g-1 dry wt), or methylmercury (4.11 ± 0.146 µg Hg.g-1 dry wt) diet. After 78 days of feeding, total mercury was highest in the carcass of zebrafish fed methylmercury (12.49 ± 0.369 µg Hg.g-1 dry wt), intermediate in those fed inorganic mercury (1.09 ± 0.117 µg Hg.g-1 dry wt), and lowest in fish fed the control diet (0.48 ± 0.038 µg Hg.g-1 dry wt). Total mercury was highest in the viscera of methylmercury fed zebrafish (11.6 ± 1.86 µg Hg.g-1 dry wt), intermediate in those fed inorganic diets (4.3 ± 1.08 µg Hg.g-1 dry wt), and lowest in the control fish (below limit of detection). Total mercury was negatively associated with fish length and weight in methylmercury fed fish. Condition factor was not associated with total mercury and might not be the best measure of fitness for these fish. No liver pathologies were observed in zebrafish from any treatment.
Role of N-Acylethanolamines in Plant Defense Responses: Modulation by Pathogens and Commercial Antimicrobial Stressors
N-acyl ethanolamines (NAEs) are a class of lipids recently recognized as signaling molecules which are controlled, in part, by their degradation by fatty acid amide hydrolase (FAAH). On the basis of previous studies indicating increased NAE levels in a tobacco cell suspension-xylanase elicitor exposure system and the availability of FAAH mutants, overexpressor and knockout (OE and KO) genotypes in Arabidopsis thaliana, further roles of NAEs in A. thaliana plant defense was investigated. The commonly occurring urban antimicrobial contaminant triclosan (TCS) has been shown to suppress lipid signaling associated with plant defense responses. Thus, a second objective of this study was to determine if TCS exposure specifically interferes with NAE levels. No changes in steady state NAE profiles in A. thaliana-Pseudomonas syringae pv. syringae and A. thaliana-flagellin (bacterial peptide, flg22) challenge systems were seen despite evidence that defense responses were activated in these systems. There was a significant drop in enoyl-ACP reductase (ENR) enzyme activity, which catalyzes the last step in the fatty acid biosynthesis pathway in plants, on exposure of the seedlings to TCS at 10 ppm for 24 h and decreased reactive oxygen species (ROS) production due to flg22 in long term exposure of 0.1 ppm and short term exposure of 5 ppm. However, these responses were not accompanied by significant changes in steady state NAE profiles.
Wind Energy-related Wildlife Impacts: Analysis and Potential Implications for Rare, Threatened and Endangered Species of Birds and Bats in Texas
Texas currently maintains the highest installed nameplate capacity and does not require publicly available post-construction monitoring studies that examine the impacts of wind energy production on surrounding fauna. This thesis examines potential wind energy impacts on avian and bat species in Texas through a three-part objective. The first two objectives synthesize literature on variables attractive to species within wind development areas and estimate impacted ranges outside of Texas, based on studies examining wind energy's environmental impacts. The third objective focuses on Texas wind development potential for interaction with rare, threatened and endangered species of birds and bats using GIS analysis with a potential hazard index (PHI) model, which addresses broad-spectrum, high risk variables examined within the first two objectives. Assuming areas with higher wind speeds have potential for wind development, PHI values were calculated for 31 avian and ten bat species, based on an analysis of species range data obtained from the Texas Parks and Wildlife Department and wind data obtained from the National Renewable Energy Laboratory. Results indicate one avian species, Tympanuchus pallidicinctus, is at high risk for wind development interaction on an annual basis, with 20 species of birds and nine species of bats at higher risk during the spring season. This macro-scale approach for identifying high risk species in Texas could be used as a model to apply to other conterminous states' preliminary evaluation of wind energy impacts.
Adaptive Advantages of Carotenoid Pigments in Alpine and Subalpine Copepod Responses to Polycyclic Aromatic Hydrocarbon Induced Phototoxicity
Alpine zooplankton are exposed to a variety of stressors in their natural environment including ultraviolet radiation. Physiological coping mechanisms such as the accumulation of photoprotective compounds provide these zooplankton protection from many of these stressors. Elevated levels of carotenoid compounds such as astaxanthin have been shown to help zooplankton survive longer when exposed to ultraviolet radiation presumably due to the strong antioxidant properties of carotenoid compounds. This antioxidant capacity is important because it may ameliorate natural and anthropogenic stressor-induced oxidative stress. While previous researchers have shown carotenoid compounds impart increased resistance to ultraviolet radiation in populations of zooplankton, little work has focused on the toxicological implications of PAH induced phototoxicity on zooplankton containing high levels of carotenoid compounds. This thesis discusses research studying the role that carotenoid compounds play in reducing PAH induced phototoxicity. By sampling different lakes at elevations ranging from 9,500' to 12,700' in the front range of the Colorado Rocky Mountains, copepod populations containing different levels of carotenoid compounds were obtained. These populations were then challenged with fluoranthene and ultraviolet radiation. Results discussed include differences in survival and levels of lipid peroxidation among populations exhibiting different levels of carotenoid compounds, and the toxicological and ecological implications of these results.
Effects of Suspended Multi-Walled Carbon Nanotubes on Daphnid Growth and Reproduction
Multi-walled carbon nanotube aggregates can be suspended in the aqueous phase by natural organic matter. These aggregates are ingested by filter feeding zooplankton. Ingested aggregates result in decreased growth and decreased reproduction. These effects may be caused by reduction in energy input from normal feeding behavior. pH alters natural organic matter structure through changes in electrostatic repulsion. Altered natural organic matter structure changes multi-walled carbon nanotube aggregate size. This size variation with variation in pH is significant, but not large enough a change in size to alter toxicity, as the aggregate size range remains well within the particle size selection of the organisms.
The impact of climate and flooding on tree ring growth of Fraxinus pennsylvanica in north-central Texas.
Tree cores of Fraxinus pennsylvanica were used in a dendrochronological analysis investigating the species' responses to climate and flooding. The objective was to develop a model that incorporates the effects of precipitation, temperature, and flooding on radial growth in this species in north-central Texas. The trees exhibited strong climatic signals. The study clearly shows that all three factors have significant impacts on tree ring growth both prior to and during growth; however, the nature and extent of these impacts are highly dependent on what time of year they occur. The large temporal variations in growth responses emphasize the importance of considering the timing of environmental events when studying tree growth responses.
Characterizing Storm Water Runoff from Natural Gas Well Sites in Denton County, Texas
In order to better understand runoff characteristics from natural gas well sites in north central Texas, the City of Denton, with assistance through an EPA funded 104b3 Water Quality Cooperative Agreement, monitored storm water runoff from local natural gas well sites. Storm water runoff was found to contain high concentrations of total suspended solids (TSS). Observed TSS concentrations resulted in sediment loading rates that are similar to those observed from typical construction activities. Petroleum hydrocarbons, in contrast, were rarely detected in runoff samples. Heavy metals were detected in concentrations similar to those observed in typical urban runoff. However, the concentrations observed at the gas well sites were higher than those measured at nearby reference sites. Storm water runoff data collected from these sites were used to evaluate the effectiveness of the water erosion prediction project (WEPP) model for predicting runoff and sediment from these sites. Runoff and sediment predictions were adequate; however, rainfall simulation experiments were used to further characterize the portion of the site where drilling and extraction operations are performed, referred to as the "pad site." These experiments were used to develop specific pad site erosion parameters for the WEPP model. Finally, version 2 of the revised universal soil loss equation (RUSLE 2.0) was used to evaluate the efficiency of best management practices (BMPs) for natural gas well sites. BMP efficiency ratings, which ranged from 52 to 93%, were also evaluated in the context of site management goals and implementation cost, demonstrating a practical approach for managing soil loss and understanding the importance of selecting appropriate site-specific BMPs.
The impact of invertebrates to four aquatic macrophytes: Potamogeton nodosus, P. illinoensis, Vallisneria americana and Nymphaea mexicana.
This research investigated the impact of invertebrates to four species of native aquatic macrophytes: V. americana, P. nodosus, P. illinoensis, and N. mexicana. Two treatments were utilized on each plant species, an insecticide treatment to remove most invertebrates and a non-treated control. Ten herbivore taxa were collected during the duration of the study including; Synclita, Paraponyx, Donacia, Rhopalosiphum, and Hydrellia. Macrophyte biomass differences between treatments were not measured for V. americana or N. mexicana. The biomasses of P. nodosus and P. illinoensis in non-treated areas were reduced by 40% and 63% respectively. This indicated that herbivory, once thought to be insignificant to aquatic macrophytes, can cause substantial reductions in biomass.
Density, Distribution and Habitat Requirements for the Ozark Pocket Gopher (Geomys Bursarius Ozarkensis)
A new subspecies of the plains pocket gopher (Geomys bursarius ozarkensis), located in the Ozark Mountains of north central Arkansas, was recently described by Elrod et al. (2000). Current range for G. b. ozarkensis was established, habitat preference was assessed by analyzing soil samples, vegetation and distance to stream and potential pocket gopher habitat within the current range was identified. A census technique was used to estimate a total density of 3, 564 pocket gophers. Through automobile and aerial survey 51 known fields of inhabitance were located extending the range slightly. Soil analyses indicated loamy sand as the most common texture with a slightly acidic pH and a broad range of values for other measured soil parameters and 21 families of vegetation were identified. All inhabited fields were located within an average of 107.2m from waterways and over 1,600 hectares of possible suitable habitat was identified.
Evaluation of a Common Carp (Cyprinus carpio L.) Exclusion and Trapping Device for Use in Aquatic Plant Founder Colony Establishment
The focus of this study was to design and evaluate a trapping system that would reduce populations of common carp within water bodies in conjunction with establishment of native aquatic macrophytes founder colonies. A pond study and field study were conducted. A pond study was performed at the Lewisville Aquatic Ecosystem Research Facility, located in Lewisville, Texas, followed by a field study within a constructed wetland located in southern Dallas, Texas. For the pond study, twelve funnel traps were constructed (four reps of each type: control, dual-walled and ring cage). Two anti-escape devices were tested with funnels including steel fingers and hinged flaps. Ring cage and dual-walled treatments were planted using native pondweeds, while controls were left unplanted (additional bait and a drift fence scenarios were also tested). Common carp were introduced into the study pond. Chi-square statistical analyses were utilized and showed ring cage treatments using fingers as well as the use of a drift fence to be most effective. Following completion of the pond study, the two most effective treatments (controls and ring cages) were tested within the Dallas, Texas wetland; no carp were caught during the field test.
Use of In-Stream Water Quality Measurements and Geospatial Parameters to Predict Consumer Surfactant Toxic Units in the Upper Trinity River Watershed, Texas
Surfactants are used in a wide assortment of "down-the-drain" consumer products, yet they are often discharged in wastewater treatment plant effluent into receiving water, potentially causing environmental harm. The objective of this project was to predict surfactant toxic units and in-stream nutrients in the upper Trinity River watershed. Surface and pore water samples were collected in late summer 2005. General chemistries and surfactant toxic units were calculated. GIS models of anthropogenic and natural factors were collected and analyzed according to subwatersheds. Multiple regression analyses using the Maximum R2 improvement method were performed to predict surfactant toxic units and in-stream nutrients using GIS and in-stream values. Both geospatial and in-stream parameters generated multiple regression models for surfactant surface and pore water toxic units, as well as in-stream nutrients, with high R2 values. Thus, GIS and in-stream parameter modeling have the potential to be reliable and inexpensive method of predicting surfactant toxic units and nutrient loading in the upper Trinity River watershed.
Influence of Sediment Exposure and Water Depth on Torpedograss Invasion of Lake Okeechobee, Florida
Torpedograss (Panicum repens) was first observed in Lake Okeechobee in the 1970s and appears to have displaced an estimated 6,400 ha of native plants, such as spikerush (Eleocharis cellulosa), where inundation depths are often less than 50 cm. Two series of studies evaluated substrate exposure and water depth influences on torpedograss establishment and competitiveness. Results revealed that fragments remain buoyant for extended periods and so facilitate dispersal. Once anchored to exposed substrate fragments can readily root and establish. Subsequently, torpedograss thrives when subjected to inundations to 75 cm and survives prolonged exposure to depths greater than 1 m. These findings suggest that fluctuating water levels contribute to torpedograss dispersal and colonization patterns and that low water levels increase marsh area susceptible to invasion. The competition study found that spikerush grown in monoculture produces significantly more biomass when continually inundated to shallow depths (10 to 20 cm) than when subjected to drier conditions (-25 cm) or greater inundations (80 cm). In contrast, torpedograss establishes more readily on exposed substrate (-25 to 0 cm) compared to inundate substrates. During the first growing season biomass production increases as substrate exposure interval increases. However, during the second year, established torpedograss produces more biomass when grown on intermittently wet (0 cm) compared to permanently dry (-25 cm) or intermittently inundated (10 cm) substrates. No difference in production was observed between substrates permanently inundated (10 cm) and any other regime tested. During the first two years of torpedograss invasion, regardless of treatment, spikerush suppresses invasion and torpedograss had little effect on established spikerush, indicating that spikerush-dominated areas are capable of resisting torpedograss invasion. Even so, disturbances that might cause mortality of long hydroperiod species, such as spikerush, may create open gaps in the native vegetation and thus facilitate torpedograss establishment and expansion.
Temperature tolerances and predation susceptibilities of transgenic and wildtype zebra danios, Danio rerio.
Both the upper and lower temperature tolerances of red fluorescent protein transgenic zebra danios and wildtype zebra danios, Danio rerio, were significantly different via two different methods; however, all differences are small (< 1°C) and probably not ecologically important. The U.S. geographic distributions of both transgenic and wildtype zebra danios will not be restricted by their upper thermal tolerances, but will be limited to the southern and western portions of the U.S. by their lower thermal tolerances. Largemouth bass did not preferentially prey upon transgenic zebra danios compared to wildtype danios or wildtypes relative to a native fish. If transgenic or wildtype zebra danios are released into southern or western U.S. waters, it is possible they could be eliminated by predation.
Bioavailability and toxicity of 2,4,6-trinitrotoluene in sediment.
TNT (2,4,6-trinitrotoluene) is a persistent contaminant at many military installations and poses a threat to aquatic ecosystems. Data from environmental fate and toxicity studies with TNT revealed that sediment toxicity test procedures required modification to accurately assess sediment TNT toxicity. Key modifications included aging TNT-spiked sediments 8-14 d, basing lethal dose on measured sediment concentrations of the molar sum of TNT and its main nitroaromatic (NA) transformation products (SNA), basing sublethal dose on average sediment SNA concentrations obtained from integration of sediment SNA transformation models, avoiding overlying water exchanges, and minimizing toxicity test durations. Solid phase microextraction fibers (SPMEs) were investigated as a biomimetic chemical measure of toxicity and bioavailability. Both organism and SPME concentrations provided measures of lethal dose independent of exposure scenario (TNT-spiked sediment or TNT-spiked water) for Tubifex tubifex. Among all benthic organisms tested (Chironomus tentans, Ceriodaphnia dubia, T. tubifex) and matrixes, median lethal dose (LC50) estimates based on SPME and organism concentrations ranged from 12.6 to 55.3 mmol SNA/ml polyacrylate and 83.4 to 172.3 nmol SNA/g tissue, ww, respectively. For Tubifex, LC50s (95% CI) based on SNA concentrations in sediment and SPMEs were 223 (209-238) nmol SNA/g, dw and 27.8 (26.0-29.8) mmol SNA/ml, respectively. Reproductive effects occurred at slightly lower exposures. Median effective dose (EC50) estimates (95% CI) for Tubifex cocoon production, based on sediment and SPME concentrations, were 118 (114-122) nmol SNA/g, dw and 21.8 (21.2-22.4) mmol SNA/ml, respectively. Bioconcentration experiments with Tubifex revealed that compound hydrophobicity predicted the toxicokinetics and bioconcentration of these compounds from water, however, there was a large discrepancy between the toxicokinetics of absorbed versus metabolically-generated aminodinitrotoluenes. A large portion of bioconcentrated, radiolabeled TNT transformation products could not be identified. In addition to their ability to provide matrix-independent measures of dose, SPME concentrations were more accurate indicators of bioavailable NAs than …
On-Road Remote Sensing of Motor Vehicle Emissions: Associations between Exhaust Pollutant Levels and Vehicle Parameters for Arizona, California, Colorado, Illinois, Texas, and Utah
On-road remote sensing has the ability to operate in real-time, and under real world conditions, making it an ideal candidate for detecting gross polluters on major freeways and thoroughfares. In this study, remote sensing was employed to detect carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxide (NO). On-road remote sensing data taken from measurements performed in six states, (Arizona, California, Colorado, Illinois, Texas, and Utah) were cleaned and analyzed. Data mining and exploration were first undertaken in order to search for relationships among variables such as make, year, engine type, vehicle weight, and location. Descriptive statistics were obtained for the three pollutants of interest. The data were found to have non-normal distributions. Applied transformations were ineffective, and nonparametric tests were applied. Due to the extremely large sample size of the dataset (508,617 records), nonparametric tests resulted in "p" values that demonstrated "significance." The general linear model was selected due to its ability to handle data with non-normal distributions. The general linear model was run on each pollutant with output producing descriptive statistics, profile plots, between-subjects effects, and estimated marginal means. Due to insufficient data within certain cells, results were not obtained for gross vehicle weight and engine type. The "year" variable was not directly analyzed in the GLM because "year" was employed in a weighted least squares transformation. "Year" was found to be a source of heteroscedasticity; and therefore, the basis of a least-squares transformation. Grouped-years were analyzed using medians, and the results were displayed graphically. Based on the GLM results and descriptives, Japanese vehicles typically had the lowest CO, HC, and NO emissions, while American vehicles ranked high for the three. Illinois, ranked lowest for CO, while Texas ranked highest. Illinois and Colorado were lowest for HC emissions, while Utah and California were highest. For NO, Colorado ranked highest …
Organic carbon dynamics of the Neches River and its floodplain.
A large river system typically derives the majority of its biomass from production within the floodplain. The Neches River in the Big Thicket National Preserve is a large blackwater river that has an extensive forested floodplain. Organic carbon was analyzed within the floodplain waters and the river (upstream and downstream of the floodplain) to determine the amount of organic carbon from the floodplain that is contributing to the nutrient dynamics in the river. Dissolved organic carbon was significantly higher at downstream river locations during high discharge. Higher organic carbon levels in the floodplain contributed to increases in organic carbon within the Neches River downstream of the floodplain when Neches River discharges exceeded 10,000 cfs. Hurricane Rita passed through the Big Thicket National Preserve in September 2005. Dissolved organic carbon concentrations recorded after Hurricane Rita in the Neches River downstream of the floodplain were significantly higher than upstream of the floodplain. Dissolved organic carbon was twice as high after the hurricane than levels prior to the hurricane, with floodplain concentrations exceeding 50 ppm C. The increase in organic carbon was likely due to nutrients leached from leaves, which were swept from the floodplain trees prior to normal abscission in the fall. A continuum of leaf breakdown rates was observed in three common floodplain species of trees: Sapium sebiferum, Acer rubrum, and Quercus laurifolia. Leaves collected from blowdown as a result of Hurricane Rita did not break down significantly faster than leaves collected prior to abscission in the fall. Processing coefficients for leaf breakdown in a continuously wet area of the floodplain were significantly higher than processing coefficients for leaf breakdown on the floodplain floor. The forested floodplain of the Neches River is the main contributor of organic carbon. When flow is greater than 10,000 csf, the floodplain transports organic carbon directly …
Geology as a Georegional Influence on Quercus Fagaceae Distribution in Denton and Coke Counties of Central and North Central Texas and Choctaw County of Southeastern Oklahoma, Using GIS as an Analytical Tool.
This study elucidates the underlying relationships for the distribution of oak landcover on bedrock and soil orders in two counties in Texas and one in Oklahoma. ESRI's ArcGis and ArcMap was used to create surface maps for Denton and Coke Counties, Texas and Choctaw County, Oklahoma. Attribute tables generated in GIS were exported into a spreadsheet software program and frequency tables were created for every formation and soil order in the tri-county research area. The results were both a visual and numeric distribution of oaks in the transition area between the eastern hardwood forests and the Great Plains. Oak distributions are changing on this transition area of the South Central Plains. The sandy Woodbine and Antlers formations traditionally associated with the largest oak distribution are carrying oak coverage of approximately 31-32% in Choctaw and Denton Counties. The calcareous Blackland and Grand Prairies are traditionally associated with treeless grasslands, but are now carrying oak and other tree landcover up to 18.9%. Human intervention, including the establishment of artificial, political and social boundaries, urbanization, farming and fire control have altered the natural distribution of oaks and other landcover of this unique georegion.
Analysis of the One-Horned Rhinoceros (Rhinoceros Unicornis) Habitat in the Royal Chitwan National Park, Nepal.
This study analyzes the remaining suitable habitat of the one-horned rhinoceros, Rhinoceros unicornis, in Royal Chitwan National Park of Nepal. An April 2003 Landsat image was classified into eight land cover types: wetland, sand, water, mixed forest, sal forest, agriculture, settlement, and grassland. This image was converted into habitat suitability maps using cover, food, and water. The rhinoceros prefers grassland habitat with oxbow lakes and closed canopy during the monsoon season. Nominal values of five parameters were used to create a map of habitat suitability index. The map was categorized into four habitat classes: highly unsuitable, unsuitable, moderately suitable habitat, and suitable. Landscape metrics, patch metrics and class metrics associated with habitat were determined through the use of FRAGSTATS.
Rainfall-runoff changes due to urbanization: a comparison of different spatial resolutions for lumped surface water hydrology models using HEC-HMS.
Hydrologic models were used to examine the effects of land cover change on the flow regime of a watershed located in North-Central Texas. Additionally, the effect of spatial resolution was examined by conducting the simulations using sub-watersheds of different sizes to account for the watershed. Using the Army Corps of Engineers, Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS), two different modeling methods were evaluated at the different sub-watershed resolutions for four rainfall events. Calibration results indicate using the smaller spatial resolutions improves the model results. Different scenarios for land cover change were evaluated for all resolutions using both models. As land cover change increased, the amount of flow from the watershed increased.
Simulation of physical and chemical processes in reservoirs: Two case studies.
Managing water quality aspects requires the use of integrative tools that allow a holistic approach to this problem. Water quality models coupled to hydrodynamic models are these tools. This study presents the application of the water quality model WASP coupled to the hydrodynamic model DYNHYD for two distinct reservoirs: Lake Texoma and Tocoma Reservoir. Modeling the former included simulations of water velocities, water level, and four chemical and physical compounds: chlorides, dissolved oxygen (DO), biochemical oxygen demand (BOD), and total suspended solids (TSS); and validation of the results by comparing with observed values during March - May, 1997. The latter is still under project status and the simulation was performed in a prospective way. The analysis included simulations of water velocities under current and for expected conditions, DO and BOD. Both models, DYNHYD and WASP, fitted pretty well to observed conditions for Lake Texoma and for where Tocoma Reservoir has been planned. Considering management and decision support purposes, the role of boundary and loading conditions also was tested. For Lake Texoma, controlling boundary conditions for chlorides is a determinant factor for water quality of the system. However, DO and TSS in the reservoir are governed by additional process besides the condition of the boundary. Estimated loadings for this system did not provided significant effects, even though the allocation of a load for chlorides resulted in significant changes in the trend for expected chloride concentrations at the Washita River Arm of Lake Texoma. For Tocoma Reservoir, the expected concentration of DO all over the reservoir is going to driven by boundary conditions, as well as by the management of autochthonous BOD loadings provided by vegetation decomposition. These two factors will be determinant for the resulting water quality of the future reservoir.
Effects on Survival, Reproduction and Growth of Ceriodaphnia dubia following Single Episodic Exposure to Copper or Cadmium
Effects of episodic exposures have gained attention as the regulatory focus of the Clean Water Act has shifted away from continuous-flow effluents. Standardized laboratory toxicity tests require that exposure be held constant. However, this approach may not accurately predict organism responses in the field following episodic exposures such as those associated with rain-driven runoff events or accidental pollutant discharge. Using a modified version of the 7-day short-term chronic test recommended by the US Environmental Protection Agency, Ceriodaphnia dubia were exposed to copper or cadmium for durations ranging from 1 minute to 24 hours. In addition, adult reproductive recovery and effects on second generation individuals was assessed following select copper exposures. Finally, cadmium exposures were compared in reconstituted hard water (RHW) and municipal treated wastewater effluent (TWE). Following exposure, organisms were transferred to clean RHW or TWE and maintained for the remainder of the test. No- and lowest observed effect concentrations (NO- and LOECs) increased logarithmically with respect to logarithmic decreases in duration regardless of metal, endpoint or water type. Effective concentrations of cadmium however, were usually higher than those of copper, especially in TWE. LOECs for C. dubia survival following 24-hour and 5-minute exposures to copper were 116 and 417 µg/L, respectively. LOECs for fecundity were 58 and 374 µg/L, respectively. Neonate production of first generation adult C. dubia appeared to recover from pulsed copper exposure upon examination of individual broods. Cumulative mean neonate production however, showed almost no signs of recovery at exposure durations ≥3 hours. Pulse exposure to copper also resulted in diminished fecundity of unexposed second generation individuals. Such effects were pronounced following parental exposure for 24 hours but lacking after parental exposures ≤3 hours. LOECs for C. dubia survival following 24-hour and 5-minute exposures to cadmium in RHW were 44 and 9000 µg/L, respectively. LOECs for …
A geospatial tool for assessing potential wildland fire risk in central Texas.
Wildland fires in the United States are not always confined to wilderness areas. The growth of population centers and housing developments in wilderness areas has blurred the boundaries between rural and urban. This merger of human development and natural landscape is known in the wildland fire community as the wildland urban interface or WUI, and it is within this interface that many wildland fires increasingly occur. As wildland fire intrusions in the WUI increase so too does the need for tools to assess potential impact to valuable assets contained within the interface. This study presents a methodology that combines real-time weather data, a wildland fire behavior model, satellite remote sensing and geospatial data in a geographic information system to assess potential risk to human developments and natural resources within the Austin metropolitan area and surrounding ten counties of central, Texas. The methodology uses readily available digital databases and satellite images within Texas, in combination with an industry standard fire behavior model to assist emergency and natural resource managers assess potential impacts from wildland fire. Results of the study will promote prevention of WUI fire disasters, facilitate watershed and habitat protection, and help direct efforts in post wildland fire mitigation and restoration.
Assessing Outcomes of a Recycling Education and Service Program within an Elementary School
During the spring 2004 a pilot school recycling program was implemented within Robert E. Lee Elementary. The primary goal of the program was to determine how recycling education in the school would affect curbside recycling rates within the surrounding community. The program was a cooperative effort between the University of North Texas, City of Denton Solid Waste Department and Keep Denton Beautiful. Throughout the first months of the study during the spring 2004, an increase in curbside recycling within the Robert E. Lee Elementary attendance zone was observed, with a dramatic decrease in participation over the summer and a rapid increase once again during the second full semester of the study. In a survey conducted with 3rd and 5th grade students at the pilot project school, most students expressed positive attitudes about recycling. Students whose survey responses indicated a high level of knowledge about what could be recycled were 37% more likely to claim to recycle regularly, than those students that scored low on the knowledge portion of the survey. Although the total amount of waste generation (recyclable and non-recyclable) at Robert E. Lee Elementary did not decrease during the study, the campus was able to divert recyclable material from their trash at a much higher rate than two other local elementary campuses with paper-only recycling and no associated recycling education program. Based upon the success of the recycling program at Robert E. Lee Elementary, the City of Denton Recycling Division has agreed to move forward with offering recycling to more schools within the Denton Independent School District during the 2005-2006 school year.
Determination of Habitat Preferences of Pronghorn (Antilocapra americana) on the Rolling Plains of Texas Using GIS and Remote Sensing
The Rocker b Ranch on the southern Rolling Plains has one of the last sizeable populations of pronghorn (Antilocapra americana) in Texas. To investigate habitat utilization on the ranch, pronghorn were fitted with GPS/VHF collars and were released into pastures surrounded by a variety of fences to determine how fence types affected habitat selection. Habitat parameters chosen for analysis were vegetation, elevation, slope, aspect, and distances to water, roads, and oil wells. Results showed that pronghorn on the ranch crossed modified fencing significantly less than other types of fencing. Pronghorn selected for all habitat parameters to various degrees, with the most important being vegetation type. Habitat selection could be attributed to correspondence of vegetation type with other parameters or spatial arrangements of physical features of the landscape. Seasonal differences in habitat utilization were evident, and animals tended to move shorter distances at night than they did during daylight hours.
Back to Top of Screen