On-Road Remote Sensing of Motor Vehicle Emissions: Associations between Exhaust Pollutant Levels and Vehicle Parameters for Arizona, California, Colorado, Illinois, Texas, and Utah

Access: Use of this item is restricted to the UNT Community
Description:

On-road remote sensing has the ability to operate in real-time, and under real world conditions, making it an ideal candidate for detecting gross polluters on major freeways and thoroughfares. In this study, remote sensing was employed to detect carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxide (NO). On-road remote sensing data taken from measurements performed in six states, (Arizona, California, Colorado, Illinois, Texas, and Utah) were cleaned and analyzed. Data mining and exploration were first undertaken in order to search for relationships among variables such as make, year, engine type, vehicle weight, and location. Descriptive statistics were obtained for the three pollutants of interest. The data were found to have non-normal distributions. Applied transformations were ineffective, and nonparametric tests were applied. Due to the extremely large sample size of the dataset (508,617 records), nonparametric tests resulted in "p" values that demonstrated "significance." The general linear model was selected due to its ability to handle data with non-normal distributions. The general linear model was run on each pollutant with output producing descriptive statistics, profile plots, between-subjects effects, and estimated marginal means. Due to insufficient data within certain cells, results were not obtained for gross vehicle weight and engine type. The "year" variable was not directly analyzed in the GLM because "year" was employed in a weighted least squares transformation. "Year" was found to be a source of heteroscedasticity; and therefore, the basis of a least-squares transformation. Grouped-years were analyzed using medians, and the results were displayed graphically. Based on the GLM results and descriptives, Japanese vehicles typically had the lowest CO, HC, and NO emissions, while American vehicles ranked high for the three. Illinois, ranked lowest for CO, while Texas ranked highest. Illinois and Colorado were lowest for HC emissions, while Utah and California were highest. For NO, Colorado ranked highest with Texas and Arizona, lowest.

Creator(s): Dohanich, Francis Albert
Creation Date: May 2003
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 158
Past 30 days: 7
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2003
  • Digitized: May 17, 2003
Description:

On-road remote sensing has the ability to operate in real-time, and under real world conditions, making it an ideal candidate for detecting gross polluters on major freeways and thoroughfares. In this study, remote sensing was employed to detect carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxide (NO). On-road remote sensing data taken from measurements performed in six states, (Arizona, California, Colorado, Illinois, Texas, and Utah) were cleaned and analyzed. Data mining and exploration were first undertaken in order to search for relationships among variables such as make, year, engine type, vehicle weight, and location. Descriptive statistics were obtained for the three pollutants of interest. The data were found to have non-normal distributions. Applied transformations were ineffective, and nonparametric tests were applied. Due to the extremely large sample size of the dataset (508,617 records), nonparametric tests resulted in "p" values that demonstrated "significance." The general linear model was selected due to its ability to handle data with non-normal distributions. The general linear model was run on each pollutant with output producing descriptive statistics, profile plots, between-subjects effects, and estimated marginal means. Due to insufficient data within certain cells, results were not obtained for gross vehicle weight and engine type. The "year" variable was not directly analyzed in the GLM because "year" was employed in a weighted least squares transformation. "Year" was found to be a source of heteroscedasticity; and therefore, the basis of a least-squares transformation. Grouped-years were analyzed using medians, and the results were displayed graphically. Based on the GLM results and descriptives, Japanese vehicles typically had the lowest CO, HC, and NO emissions, while American vehicles ranked high for the three. Illinois, ranked lowest for CO, while Texas ranked highest. Illinois and Colorado were lowest for HC emissions, while Utah and California were highest. For NO, Colorado ranked highest with Texas and Arizona, lowest.

Degree:
Level: Doctoral
Language(s):
Subject(s):
Keyword(s): Exhaust | remote sensing | pollutants | emissions
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 53185479 |
  • UNTCAT: b2556002 |
  • ARK: ark:/67531/metadc5524
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Use restricted to UNT Community (strictly enforced)
License: Copyright
Holder: Dohanich, Francis Albert
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.