Wind Energy-related Wildlife Impacts: Analysis and Potential Implications for Rare, Threatened and Endangered Species of Birds and Bats in Texas

Description:

Texas currently maintains the highest installed nameplate capacity and does not require publicly available post-construction monitoring studies that examine the impacts of wind energy production on surrounding fauna. This thesis examines potential wind energy impacts on avian and bat species in Texas through a three-part objective. The first two objectives synthesize literature on variables attractive to species within wind development areas and estimate impacted ranges outside of Texas, based on studies examining wind energy's environmental impacts. The third objective focuses on Texas wind development potential for interaction with rare, threatened and endangered species of birds and bats using GIS analysis with a potential hazard index (PHI) model, which addresses broad-spectrum, high risk variables examined within the first two objectives. Assuming areas with higher wind speeds have potential for wind development, PHI values were calculated for 31 avian and ten bat species, based on an analysis of species range data obtained from the Texas Parks and Wildlife Department and wind data obtained from the National Renewable Energy Laboratory. Results indicate one avian species, Tympanuchus pallidicinctus, is at high risk for wind development interaction on an annual basis, with 20 species of birds and nine species of bats at higher risk during the spring season. This macro-scale approach for identifying high risk species in Texas could be used as a model to apply to other conterminous states' preliminary evaluation of wind energy impacts.

Creator(s): Graham, Tara L.
Creation Date: August 2010
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 261
Past 30 days: 2
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: August 2010
Description:

Texas currently maintains the highest installed nameplate capacity and does not require publicly available post-construction monitoring studies that examine the impacts of wind energy production on surrounding fauna. This thesis examines potential wind energy impacts on avian and bat species in Texas through a three-part objective. The first two objectives synthesize literature on variables attractive to species within wind development areas and estimate impacted ranges outside of Texas, based on studies examining wind energy's environmental impacts. The third objective focuses on Texas wind development potential for interaction with rare, threatened and endangered species of birds and bats using GIS analysis with a potential hazard index (PHI) model, which addresses broad-spectrum, high risk variables examined within the first two objectives. Assuming areas with higher wind speeds have potential for wind development, PHI values were calculated for 31 avian and ten bat species, based on an analysis of species range data obtained from the Texas Parks and Wildlife Department and wind data obtained from the National Renewable Energy Laboratory. Results indicate one avian species, Tympanuchus pallidicinctus, is at high risk for wind development interaction on an annual basis, with 20 species of birds and nine species of bats at higher risk during the spring season. This macro-scale approach for identifying high risk species in Texas could be used as a model to apply to other conterminous states' preliminary evaluation of wind energy impacts.

Degree:
Level: Master's
Physical Description:

vii, 153 p. : ill., maps

Language(s):
Subject(s):
Keyword(s): Wind energy | Texas avifauna | environmental impacts
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 697791003 |
  • UNTCAT: b3911379 |
  • ARK: ark:/67531/metadc30459
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Graham, Tara L.
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.