This system will be undergoing maintenance June 27th between 9:00AM and 12:00PM CDT.

Search Results

An algorithm to calculate the beam momentum distribution from flying wire profiles
Horizontal flying wire measurements give beam profiles from which information about the beam momentum distribution and betatron distribution can be extracted. When calculating these beam characteristics in the past, for the matter of simplicity, the beam has been assumed Gaussian. For beam profiles which may not be Gaussian, an algorithm to obtain the general beam momentum distribution is developed using the Fourier transform to the beam profiles. Since the profile is the convolution of the momentum distribution and the betatron distribution, using a Fourier transform method makes calculations easier. 6 figs.
Cooling System Expansion Tank Safety Note
No Description Available.
Cost reduction study for the LANL KrF laser-driven LMF design
This report is in fulfillment of the deliverable requirements for the optical components portions of the LANL-KrF Laser-Driven LMF Design Cost Reduction Study. This report examines the future cost reductions that may accrue through the use of mass production, innovative manufacturing techniques, and new materials. Results are based on data collection and survey of optical component manufacturers, BDM experience, and existing cost models. These data provide a good representation of current methods and technologies from which future estimates can be made. From these data, a series of scaling relationships were developed to project future costs for a selected set of technologies. The scaling relationships are sensitive to cost driving parameters such as size and surface figure requirements as well as quantity requirements, production rate, materials, and manufacturing processes. In addition to the scaling relationships, descriptions of the selected processes were developed along with graphical representations of the processes. This report provides a useful tool in projecting the costs of advanced laser concepts at the component level of detail. A mix of the most diverse yet comparable technologies was chosen for this study. This yielded a useful, yet manageable number of variables to examine. The study has resulted in a first-order cost model which predicts the relative cost behavior of optical components within different variable constraints.
Cryogenic Control System
The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.
Dynamic Aperture and the Role of BC2
No Description Available.
Dynamic Aperture for Lattices With Some ß* = 2 Insertions
No Description Available.
An Economic Impact Analysis of the Proposed Yakima/Klickitat Fishery Enhancement Project; Preliminary Design Report, Appendix D.
The objective of this study is to estimate the economic impact of the proposed Yakima/Klickitat Production Project on the local economies of the Yakima and Klickitat subbasins. The project, when operating at planned maximum production, will augment the total number of salmon and steelhead returning to the subbasins by 77,600 and will increase the sustainable terminal harvest by 55,160. These estimates do not include fish harvested in the ocean or in the mainstem Columbia. In addition to evaluating the impacts of the construction, operations and maintenance, experimentation and monitoring, and harvest activities described in the Draft Environmental Assessment (Bonneville Power Administration, 1989), our analysis also evaluates some passageway improvements and Phase II screening of irrigation structures. Both of these augmentations are required In order for the project to reach maximum planned harvest levels. The study area includes the Yakima Subbasin economy (Yakima and Kittitas counties), the mid-Columbia Basin/Klickitat Subbasin economies (Klickitat, Hood River, and Wasco counties), and the Tri-Cities economy (Benton and Franklin counties). The study period extends from 1990 through 2015: from preconstruction planning activities through reaching maximum production.
Enhancing the use of coals by gas reburning-sorbent injection
The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.
Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report no. 8-A, June 1--August 31, 1989
The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.
Low Temperature and Neutron Physics Studies: Final Progress Report, March 1, 1986--May 31, 1987
A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation. 16 refs.
Mars Rover RTG Study
This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of Special Applications, in support of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. Cross Reference CID #7135 dated 10/1989. There is a duplicate copy. This document is not relevant to the OSTI Library. Do not send.
SSC (Superconducting Super Collider) supplementary conceptual design report: Cryogenics for detectors
This technical memorandum contains text provided to the SSC for their use in the Supplementary Conceptual Design Report. It was written as part of a Fermilab effort under the guidance of Ray Stefanski of the Fermilab Research Division. This particular memorandum considers the cryogenic systems required to support the superconducting magnets and liquid argon calorimeters associated with SSC detectors.
Upper limits on neutron bursts emitted from Ti pressurized D sub 2 gas cells
In a search for bursts of neutrons from Ti in pressurized D{sub 2} gas cells, no statistically significant deviations from the background were observed for events where five or more neutrons are detected over a ten day experiment, including 103 hours of counting with cells on, and 28 hours counting of various backgrounds. Up to four cells were used including some 60 grams of 662-Ti fillings in a pressurized cylinder with 40-60 atmosphere of D{sub 2} gas. Other Ti samples were used too. The samples were cooled to liquid nitrogen temperature and placed in front of the neutron detector while warming up to room temperature. Seven cooling cycles were used, for each sample. The neutron detector system included 12 liquid scintillator neutron detectors, arranged in a close packed geometry, with six detectors in the upper hemisphere and six in the lower hemisphere. A central detector placed 2 cm from the cells was used, in each hemisphere, as a scatterer for a time of flight coincidence measurement, yielding the total coincidence efficiency of {epsilon}=2{plus minus}1%. The system was also used in singles mode to allow for counting with large efficiency. A neutron event is characterized by measuring its pulse heights, pulse shapes, and in some cases its time of flight. Special attention was given to reducing the background by using massive shielding, cosmic ray veto counters and geometrical arrangement that allowed to distinguish between a background event and expected data events. The so obtained background rate is 100 cph in the singles mode'' and in the upper hemisphere 0.4 cph in the coincidence mode.'' We are currently continuing our data analysis in search for random emission and a detailed study of background effects that may reveal the origin of conflicting results reported on neutron emission from cold fusion.'' 3 refs., 5 …
ZPPR progress report, January 1989 through April 1989
Further results are presented from the large, homogeneous assembly ZPPR-18 in the JUPITER-III program. Reaction rate results are given for ZPPR-18B along with measured gamma ray dose results from ZPPR-18A and 18B. Control rod worth results from the ZPPR-18 assemblies are included. Calculation models, measured and calculated k-effective values and measured sodium worth values, are presented for the ZPPR-19 assemblies of the lo program.
Back to Top of Screen