Comment on "Steady State Solutions to PBPK Models and their Applications to Risk Assessment I: Route to Route Extrapolation of Volatile Chemicals," by Chiu and White in Risk Analysis, 26(3), 769-780

PDF Version Also Available for Download.

Description

Steady-state analyses of generic PBPK models for volatile organic chemical (VOC) exposure and risk assessment have been undertaken and applied for nearly two decades now. Chiu and White's paper on this subject adds little new to this earlier work. Their dismissive claim that ''Similar analyses have been done for specific chemicals and for inhalation'' is misleading, because some of this earlier work did indeed focus on ''generic'' PBPK models generally applicable to VOC exposure by multiple routes. In particular, the earliest of these previous studies developed steady-state solutions for generic PBPK models including respiratory and 1-compartment oral routes of exposure, … continued below

Physical Description

PDF-file: 3 pages; size: 0.1 Mbytes

Creation Information

Bogen, K T July 20, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Steady-state analyses of generic PBPK models for volatile organic chemical (VOC) exposure and risk assessment have been undertaken and applied for nearly two decades now. Chiu and White's paper on this subject adds little new to this earlier work. Their dismissive claim that ''Similar analyses have been done for specific chemicals and for inhalation'' is misleading, because some of this earlier work did indeed focus on ''generic'' PBPK models generally applicable to VOC exposure by multiple routes. In particular, the earliest of these previous studies developed steady-state solutions for generic PBPK models including respiratory and 1-compartment oral routes of exposure, and further specified how to add injection and dermal exposure routes. Chiu and White included a 2-compartment oral pathway and a lung compartment in an otherwise identical generic PBPK model, but did not consider other exposure pathways such as dermal uptake. Each of the earlier studies first presented a steady-state solution to a generic, multiroute PBPK model, and only then applied the generic solution to a problem or illustration involving a specific compound--i.e., the same approach used later by Chiu and White. For example, the earlier study included a simple, intuitive expression for low-dose metabolized fraction f*{sub m} of any applied multiroute dose, allowing route-to-route extrapolation regardless of compound in low-dose contexts that typically are of interest in environmental VOC risk assessment. Section 2.2 of Chiu and White's paper (''Generalization to Time-Varying Exposures'') concludes that, under conditions of virtually linear metabolism, PBPK system ''solutions to steady-state exposures are directly applicable to intermittent exposures''--i.e., under such conditions, all steady-state system solutions (or output states) become valid when each dynamic input is replaced by its corresponding time-weighted average value. This conclusion, a well known axiom of linear systems theory, was stated explicitly to apply to f*{sub m} in an earlier study. A subsequent study addressed how generic steady-state PBPK solutions can be modified to estimate transient peak target-tissue concentrations at dynamic equilibrium, for dynamic exposure scenarios that involve exposure to a regular (e.g., daily) series of brief inputs by multiple pathways--an issue that may be importance for endpoints that have a cytotoxic mechanism of action.

Physical Description

PDF-file: 3 pages; size: 0.1 Mbytes

Source

  • Journal Name: Risk Analysis, vol. 26, no. 6, December 1, 2006, pp. 1415

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-223327
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 900056
  • Archival Resource Key: ark:/67531/metadc880812

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 20, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 22, 2016, 10:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 23

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bogen, K T. Comment on "Steady State Solutions to PBPK Models and their Applications to Risk Assessment I: Route to Route Extrapolation of Volatile Chemicals," by Chiu and White in Risk Analysis, 26(3), 769-780, article, July 20, 2006; Livermore, California. (https://digital.library.unt.edu/ark:/67531/metadc880812/: accessed May 12, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen