FY05 LDRD Final Report Molecular Radiation Biodosimetry LDRD Project Tracking Code: 04-ERD-076

One of 84 reports in the series: Fiscal Year 2005 available on this site.

PDF Version Also Available for Download.

Description

In the event of a nuclear or radiological accident or terrorist event, it is important to identify individuals that can benefit from prompt medical care and to reassure those that do not need it. Achieving these goals will maximize the ability to manage the medical consequences of radiation exposure that unfold over a period of hours, days, weeks, years, depending on dose. Medical interventions that reduce near term morbidity and mortality from high but non-lethal exposures require advanced medical support and must be focused on those in need as soon as possible. There are two traditional approaches to radiation dosimetry, ... continued below

Physical Description

PDF-file: 24 pages; size: 2.5 Mbytes

Creation Information

Jones, I M; A.Coleman, M; Lehmann, J; Manohar, C F; Marchetti, F; Mariella, R et al. February 3, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

  • Main Title: FY05 LDRD Final Report Molecular Radiation Biodosimetry LDRD Project Tracking Code: 04-ERD-076
  • Series Title: Fiscal Year 2005

Description

In the event of a nuclear or radiological accident or terrorist event, it is important to identify individuals that can benefit from prompt medical care and to reassure those that do not need it. Achieving these goals will maximize the ability to manage the medical consequences of radiation exposure that unfold over a period of hours, days, weeks, years, depending on dose. Medical interventions that reduce near term morbidity and mortality from high but non-lethal exposures require advanced medical support and must be focused on those in need as soon as possible. There are two traditional approaches to radiation dosimetry, physical and biological. Each as currently practiced has strengths and limitations. Physical dosimetry for radiation exposure is routine for selected sites and for individual nuclear workers in certain industries, medical centers and research institutions. No monitoring of individuals in the general population is currently performed. When physical dosimetry is available at the time of an accident/event or soon thereafter, it can provide valuable information in support of accident/event triage. Lack of data for most individuals is a major limitation, as differences in exposure can be significant due to shielding, atmospherics, etc. A smaller issue in terms of number of people affected is that the same dose may have more or less biological effect on subsets of the population. Biological dosimetry is the estimation of exposure based on physiological or cellular alterations induced in an individual by radiation. The best established and precise biodosimetric methods are measurement of the decline of blood cells over time and measurement of the frequency of chromosome aberrations. In accidents or events affecting small numbers of people, it is practical to allocate the resources and time (days of clinical follow-up or specialists laboratory time) to conduct these studies. However, if large numbers of people have been exposed, or fear they may have been, these methods are not suitable. The best current option for triage radiation biodosimetry is self-report of time to onset of emesis after the event, a biomarker that is subject to many false positives. The premise of this project is that greatly improved radiation dosimetry can be achieved by research and development directed toward detection of molecular changes induced by radiation in cells or other biological materials. Basic research on the responses of cells to radiation at the molecular level, particularly of message RNA and proteins, has identified biomolecules whose levels increase (or decrease) as part of cellular responses to radiation. Concerted efforts to identify markers useful for triage and clinical applications have not been reported as yet. Such studies would scan responses over a broad range of doses, below, at and above the threshold of clinical significance in the first weeks after exposure, and would collect global proteome and/or transcriptome information on all tissue samples accessible to either first responders or clinicians. For triage, the goal is to identify those needing medical treatment. Treatment will be guided by refined dosimetry. Achieving this goal entails determining whether radiation exposure was below or above the threshold of concern, using one sample collected within days of an event, with simple devices that first responders either use or distribute for self-testing. For the clinic, better resolution of dose and tissue damage is needed to determine the nature and time sensitivity of therapy, but multiple sampling times may be acceptable and clinical staff and equipment can be utilized. Two complementary areas of research and development are needed once candidate biomarkers are identified, validation of the biomarker responses and validation of devices/instrumentation for detection of responses. Validation of biomarkers per se is confirmation that the dose, time, and tissue specific responses meet the reporting requirements in a high proportion of the population, and that variation among nonexposed people due to age, life-style factors, common medical conditions, variables that are not radiation related, do not lead to unacceptable frequencies of false negatives or false positives. Validation of detection requires testing of devices/instruments for accuracy and reproducibility of results with the intended reagents, sampling protocols, and users. Different technologies, each with intrinsic virtues and liabilities, will be appropriate for RNA and protein biomarkers. Fortunately, device and instrumentation development for other clinical applications is a major industry. Hence the major challenges for radiation biodosimetry are identification of potential radiation exposure biomarkers and development of model systems that enable validation of responses of biomarkers and detection systems.

Physical Description

PDF-file: 24 pages; size: 2.5 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-218890
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/902308 | External Link
  • Office of Scientific & Technical Information Report Number: 902308
  • Archival Resource Key: ark:/67531/metadc877412

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 3, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 5, 2016, 4:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jones, I M; A.Coleman, M; Lehmann, J; Manohar, C F; Marchetti, F; Mariella, R et al. FY05 LDRD Final Report Molecular Radiation Biodosimetry LDRD Project Tracking Code: 04-ERD-076, report, February 3, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc877412/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.