Dissipative Effects in the Effective Field Theory of Inflation

PDF Version Also Available for Download.

Description

We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime … continued below

Physical Description

20 pages

Creation Information

Lopez Nacir, Diana; Porto, Rafael A.; Senatore, Leonardo & Zaldarriaga, Matias September 14, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 38 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.

Physical Description

20 pages

Source

  • Journal Name: JHEP 1201:075,2012; Journal Volume: 2012; Journal Issue: 1

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14995
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 1050862
  • Archival Resource Key: ark:/67531/metadc844176

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 14, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • Aug. 1, 2017, 11:12 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 38

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lopez Nacir, Diana; Porto, Rafael A.; Senatore, Leonardo & Zaldarriaga, Matias. Dissipative Effects in the Effective Field Theory of Inflation, article, September 14, 2012; United States. (https://digital.library.unt.edu/ark:/67531/metadc844176/: accessed May 20, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen