Determination of free CO2 in emergent groundwaters using a commercial beverage carbonation meter

PDF Version Also Available for Download.

Description

Dissolved CO{sub 2} in groundwater is frequently supersaturated relative to its equilibrium with atmospheric partial pressure and will degas when it is conveyed to the surface. Estimates of dissolved CO{sub 2} concentrations can vary widely between different hydrochemical facies because they have different sources of error (e.g., rapid degassing, low alkalinity, non-carbonate alkalinity). We sampled 60 natural spring and mine waters using a beverage industry carbonation meter, which measures dissolved CO{sub 2} based on temperature and pressure changes as the sample volume is expanded. Using a modified field protocol, the meter was found to be highly accurate in the range … continued below

Physical Description

148

Creation Information

Vesper, Dorothy J. & Edenborn, Harry M. March 12, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 116 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Dissolved CO{sub 2} in groundwater is frequently supersaturated relative to its equilibrium with atmospheric partial pressure and will degas when it is conveyed to the surface. Estimates of dissolved CO{sub 2} concentrations can vary widely between different hydrochemical facies because they have different sources of error (e.g., rapid degassing, low alkalinity, non-carbonate alkalinity). We sampled 60 natural spring and mine waters using a beverage industry carbonation meter, which measures dissolved CO{sub 2} based on temperature and pressure changes as the sample volume is expanded. Using a modified field protocol, the meter was found to be highly accurate in the range 0.2–35 mMCO{sub 2}. The meter provided rapid, accurate and precise measurements of dissolved CO{sub 2} in natural waters for a range of hydrochemical facies. Dissolved CO{sub 2} concentrations measured in the field with the carbonation meter were similar to CO{sub 2} determined using the pH-alkalinity approach, but provided immediate results and avoided errors from alkalinity and pH determination. The portability and ease of use of the carbonation meter in the field made it well-suited to sampling in difficult terrain. The carbonation meter has proven useful in the study of aquatic systems where CO{sub 2} degassing drives geochemical changes that result in surficial mineral precipitation and deposition, such as tufa, travertine and mine drainage deposits.

Physical Description

148

Source

  • Journal Name: Journal of Hydrology; Journal Volume: 438-439

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 12, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • May 13, 2019, 5:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 2
Past 30 days: 2
Total Uses: 116

Interact With This Article

Here are some suggestions for what to do next.

Top Search Results

We found eight places within this article that matched your search. View Now

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Vesper, Dorothy J. & Edenborn, Harry M. Determination of free CO2 in emergent groundwaters using a commercial beverage carbonation meter, article, March 12, 2012; United States. (https://digital.library.unt.edu/ark:/67531/metadc828527/: accessed June 6, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen