New perspectives on the cancer risks of trichloroethylene, its metabolites, and chlorination by-products

PDF Version Also Available for Download.

Description

Scientific developments in the 1990`s have important implications for the assessment of cancer risks posed by exposures to trichloroethylene (TCE). These new developments include: epidemiological studies; experimental studies of TCE carcinogenicity, metabolism and metabolite carcinogenicity; applications of new physiologically based pharmacokinetic (PBPK) models for TCE; and new pharmacodynamic data obtained for TCE and its rhetabolites. Following a review of previous assessments of TCE carcinogenicity, each of these new sets of developments is summarized. The new epidemiological data do not provide evidence of TCE carcinogenicity in humans, and the new pharmacodynamic data support the hypothesis that TCE carcinogenicity is caused by … continued below

Physical Description

66 p.

Creation Information

Bogen, K. T.; Slone, T.; Gold, L. S.; Manley, N. & Revzan, K. December 8, 1994.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Scientific developments in the 1990`s have important implications for the assessment of cancer risks posed by exposures to trichloroethylene (TCE). These new developments include: epidemiological studies; experimental studies of TCE carcinogenicity, metabolism and metabolite carcinogenicity; applications of new physiologically based pharmacokinetic (PBPK) models for TCE; and new pharmacodynamic data obtained for TCE and its rhetabolites. Following a review of previous assessments of TCE carcinogenicity, each of these new sets of developments is summarized. The new epidemiological data do not provide evidence of TCE carcinogenicity in humans, and the new pharmacodynamic data support the hypothesis that TCE carcinogenicity is caused by TCE-induced cytotoxicity. Based on this information, PBPK-based estimates for likely no-adverse effect levels (NOAELs) for human exposures to TCE are calculated to be 16 ppb for TCE in air respired 24 hr/day, and 210 ppb for TCE in drinking water. Cancer risks of zero are predicted for TCE exposures below these calculated NOAELs. For comparison, hypothetical cancer risks posed by lifetime ingestive and multiroute household exposures to TCE in drinking water, at the currently enforced Maximum Contaminant Level (MCL) concentration of 5 ppb are extrapolated from animal bioassay data using a conservative, linear dose-response model. These TCE-related risks are compared to corresponding ones associated with concentrations of chlorination by-products (CBP) in household water. It is shown that, from the standpoint of comparative hypothetical cancer risks, based on conservative linear dose-response extrapolations, there would likely be no health benefit, and more likely a possible health detriment, associated with any switch from a household water supply containing <375 ppb TCE to one containing CBP at levels corresponding to the currently proposed 80-ppb MCL for total trihalomethanes.

Physical Description

66 p.

Notes

OSTI as DE96000368

Source

  • Other Information: PBD: 8 Dec 1994

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 8, 1994

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Oct. 14, 2020, 10:32 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 18

Interact With This Report

Here are some suggestions for what to do next.

Top Search Results

We found one place within this report that matches your search. View Now

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bogen, K. T.; Slone, T.; Gold, L. S.; Manley, N. & Revzan, K. New perspectives on the cancer risks of trichloroethylene, its metabolites, and chlorination by-products, report, December 8, 1994; California. (https://digital.library.unt.edu/ark:/67531/metadc620924/: accessed May 23, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen