A pseudo thermo-mechanical model linking process parameters to microstructural evolution in multilayer additive friction stir deposition of magnesium alloy

PDF Version Also Available for Download.

Description

Article describes how additive friction stir deposition has been proposed as a disruptive manufacturing process; involving complex thermo-mechanical mechanisms during multilayer material deposition. The primary motivation for development of the model was to seek an understanding of thermo-mechanical mechanisms and their impact on microstructural evolution during additive friction stir deposition.

Physical Description

19 p.

Creation Information

Sharma, Shashank; Krishna, Mani K. V.; Radhakrishnan, M.; Pantawane, Mangesh V.; Patil, Shreyash M.; Joshi, Sameehan et al. November 24, 2022.

Context

This article is part of the collection entitled: UNT Scholarly Works and was provided by the UNT College of Engineering to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT College of Engineering

The UNT College of Engineering strives to educate and train engineers and technologists who have the vision to recognize and solve the problems of society. The college comprises six degree-granting departments of instruction and research.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Article describes how additive friction stir deposition has been proposed as a disruptive manufacturing process; involving complex thermo-mechanical mechanisms during multilayer material deposition. The primary motivation for development of the model was to seek an understanding of thermo-mechanical mechanisms and their impact on microstructural evolution during additive friction stir deposition.

Physical Description

19 p.

Notes

Abstract: Additive friction stir deposition has been proposed as a disruptive manufacturing process; involving complex thermo-mechanical mechanisms during multilayer material deposition. The current efforts have attempted to develop a FEM based pseudo-mechanical thermal model accounting for heat generation due to friction and plastic dissipation during multilayer additive friction stir deposition. The primary motivation for development of the model was to seek an understanding of thermo-mechanical mechanisms and their impact on microstructural evolution during additive friction stir deposition. The predicted temperature–time profiles agreed well with the experimentally derived ones. The computational predictions indicate rise of the peak temperatures up to 0.8 times the melting temperature of Mg-alloy. In addition, the Zener-Holloman parameter, Ze evaluated using the computational model was correlated with the microstructural evolution during the deposition process. The unique thermo-mechanical processing conditions during additive friction stir deposition led to dynamic recrystallization followed by grain coarsening. A significant extent of texture strengthening was observed in the AFSD processed samples. The already established phenomenological relationship between Ze and grain size was used to predict the grain size in the present work. The computational predictions indicate that the recrystallized grain size ranged from 4 to 6 µm, and the post deformation grain coarsening varied in the range of 4–24 µm, thereby providing reasonable agreement with the experimental observations.

Source

  • Materials & Design, 224(111412), Elsevier, November 24, 2022, pp. 1-19

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: Materials & Design
  • Volume: 224
  • Issue: 111412
  • Peer Reviewed: Yes

Collections

This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 24, 2022

Added to The UNT Digital Library

  • Oct. 12, 2023, 2:14 p.m.

Description Last Updated

  • Oct. 23, 2023, 10:41 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sharma, Shashank; Krishna, Mani K. V.; Radhakrishnan, M.; Pantawane, Mangesh V.; Patil, Shreyash M.; Joshi, Sameehan et al. A pseudo thermo-mechanical model linking process parameters to microstructural evolution in multilayer additive friction stir deposition of magnesium alloy, article, November 24, 2022; (https://digital.library.unt.edu/ark:/67531/metadc2179398/: accessed April 28, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT College of Engineering.

Back to Top of Screen