Tuning of Microstructure and Mechanical Properties in Additively Manufactured Metastable Beta Titanium Alloys

PDF Version Also Available for Download.

Description

The results from this study, on a few commercial and model metastable beta titanium alloys, indicate that the growth restriction factor (GRF) model fails to interpret the grain growth behavior in the additively manufactured alloys. In lieu of this, an approach based on the classical nucleation theory of solidification incorporating the freezing range has been proposed for the first time to rationalize the experimental observations. Beta titanium alloys with a larger solidification range (liquidus minus solidus temperature) exhibited a more equiaxed grain morphology, while those with smaller solidification ranges exhibited columnar grains. Subsequently, the printability of two candidate beta titanium … continued below

Creation Information

Nartu, Mohan Sai Kiran Kumar Yadav May 2022.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 50 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Nartu, Mohan Sai Kiran Kumar Yadav

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The results from this study, on a few commercial and model metastable beta titanium alloys, indicate that the growth restriction factor (GRF) model fails to interpret the grain growth behavior in the additively manufactured alloys. In lieu of this, an approach based on the classical nucleation theory of solidification incorporating the freezing range has been proposed for the first time to rationalize the experimental observations. Beta titanium alloys with a larger solidification range (liquidus minus solidus temperature) exhibited a more equiaxed grain morphology, while those with smaller solidification ranges exhibited columnar grains. Subsequently, the printability of two candidate beta titanium alloys containing eutectoid elements (Fe) that are prone to beta fleck in conventional casting, i.e., Ti-1Al-8V-5Fe (wt%) or Ti-185, and Ti-10V-2Fe-3Al (wt%) or Ti-10-2-3, is further investigated via two different AM processing routes. These alloys are used for high-strength applications in the aerospace industry, such as landing gears and fasteners. The Laser Engineered Net Shaping and Selective Laser Melting (the two AM techniques) results show that locally higher solidification rates in AM can prevent the problem of beta fleck and potentially produce β-titanium alloys with significantly enhanced mechanical properties over conventionally cast/forged counterparts. Further, the detailed investigation of microstructure-mechanical property relationships indicates that the precipitation or formation of non-equilibrium secondary phases like α or ω in these commercial systems can be advantageous to the mechanical properties. The influence of process parameters on the evolution of such secondary phases within the β matrix grains has also been rationalized using a FEM-based multi-physics thermo-kinetic model that predicts the multiple heating-cooling cycles experienced by the layers during the LENS deposition. Overall, the results indicate that Ti-1-8-5 and Ti-10-2-3 are promising β-Ti alloys for AM processing. Further, the results also demonstrate the ability to tune the microstructure (secondary phase precipitation and grain size) via changes in the process parameters to achieve desirable mechanical properties, obviating the need for any secondary post-processing.
The understanding obtained through this work can be coupled with the concept of β-phase stability prediction, via parameters like bond order (Bo), the energy level of metal d-orbital (Md), Mo equivalency, etc., to design novel beta titanium alloys with the desired microstructures tailored via AM for structural applications.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2022

Added to The UNT Digital Library

  • June 16, 2022, 9:46 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 50

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nartu, Mohan Sai Kiran Kumar Yadav. Tuning of Microstructure and Mechanical Properties in Additively Manufactured Metastable Beta Titanium Alloys, dissertation, May 2022; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1944224/: accessed July 17, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen