Precision Magnetic Elements for the SNS Storage Ring.

PDF Version Also Available for Download.

Description

Magnetic elements for an accumulator storage ring for a 1 GeV Spallation Neutron Source (SNS) have been under design. The accumulation of very high intensity protons in a storage ring requires beam optical elements of very high purity to minimize higher order resonances in the presence of space charge. The parameters of the elements required by the accumulator lattice design have been reported. The dipoles have a 17cm gap and are 124cm long. The quadrupoles have a physical length to aperture diameter ratio of 40cm/21cm and of 45cm/31cm. Since the elements have a large aperture and short length, optimizing the … continued below

Physical Description

3 pages

Creation Information

Danby, G.; Jackson, J. & Spataro, C. March 29, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Magnetic elements for an accumulator storage ring for a 1 GeV Spallation Neutron Source (SNS) have been under design. The accumulation of very high intensity protons in a storage ring requires beam optical elements of very high purity to minimize higher order resonances in the presence of space charge. The parameters of the elements required by the accumulator lattice design have been reported. The dipoles have a 17cm gap and are 124cm long. The quadrupoles have a physical length to aperture diameter ratio of 40cm/21cm and of 45cm/31cm. Since the elements have a large aperture and short length, optimizing the optical effects of magnet ends is the major design challenge. Two dimensional (2D) computer computations can, at least on paper, produce the desired accuracy internal to magnets, i.e. constant dipole fields and linear quadrupole gradients over the desired aperture to 1 x 10{sup -4}. To minimize undesirable end effects three dimensional (3D) computations can be used to design magnet ends. However, limitations on computations can occur, such as necessary finite boundary conditions, actual properties of the iron employed, hysteresis effects, etc., which are slightly at variance with the assumed properties. Experimental refinement is employed to obtain the desired precision.

Physical Description

3 pages

Source

  • 1999 PARTICLE ACCELERATOR CONFERENCE, NEW YORK, NY (US), 03/29/1999--04/02/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--66441
  • Grant Number: AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 15016626
  • Archival Resource Key: ark:/67531/metadc1411688

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 29, 1999

Added to The UNT Digital Library

  • Jan. 23, 2019, 12:54 p.m.

Description Last Updated

  • May 20, 2019, 5:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Danby, G.; Jackson, J. & Spataro, C. Precision Magnetic Elements for the SNS Storage Ring., article, March 29, 1999; Piscataway, New Jersey. (https://digital.library.unt.edu/ark:/67531/metadc1411688/: accessed May 1, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen