Unimolecular photodissociation dynamics of ketene (CH{sub 2}CO): The singlet/triplet branching ratio and experimental observation of the vibrational level thresholds of the transition-state

PDF Version Also Available for Download.

Description

The rotational distributions of CO products from the dissociation of ketene at photolysis energies 10 cm{sup {minus}1} below, 56, 110, 200, 325, 425, 1,107, 1,435, 1,720, and 2,500 cm{sup {minus}1} above the singlet threshold, are measured in a supersonic free jet of ketene. The CO(v{double_prime} = 0) rotational distributions at 56, 110, 200, 325, and 425 cm{sup {minus}1} are bimodal. The peaks at low J`s, which are due to CO from the singlet channel, show that the product rotational distribution of CO product from ketene dissociation on the singlet surface is well described by phase space theory (PST). For CO(v{double_prime} … continued below

Physical Description

202 p.

Creation Information

Kim, S. K. May 1, 1993.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

The rotational distributions of CO products from the dissociation of ketene at photolysis energies 10 cm{sup {minus}1} below, 56, 110, 200, 325, 425, 1,107, 1,435, 1,720, and 2,500 cm{sup {minus}1} above the singlet threshold, are measured in a supersonic free jet of ketene. The CO(v{double_prime} = 0) rotational distributions at 56, 110, 200, 325, and 425 cm{sup {minus}1} are bimodal. The peaks at low J`s, which are due to CO from the singlet channel, show that the product rotational distribution of CO product from ketene dissociation on the singlet surface is well described by phase space theory (PST). For CO(v{double_prime} = 0) rotational distributions at higher excess energies, the singlet and triplet contributions are not clearly resolved, and the singlet/triplet branching ratios are estimated by assuming that PST accurately predicts the CO rotational distribution from the singlet channel and that the distribution from the triplet channel changes little from that at 10 cm{sup {minus}1} below the singlet threshold. At 2,500 cm{sup {minus}1} excess energy, the CO(v{double_prime} = 1) rotational distribution is obtained, and the ratio of CO(v{double_prime} = 1) to CO(v{double_prime} = 0) products for the singlet channel is close to the variational RRKM calculation, 0.038, and the separate statistical ensembles (SSE) prediction, 0.041, but much greater than the PST prediction, 0.016. Rate constants for the dissociation of ketene (CH{sub 2}CO) and deuterated ketene (CD{sub 2}CO) have been measured at the threshold for the production of the CH(D){sub 2} and CO. Sharp peaks observed in photofragment excitation (PHOFEX) spectra probing CO (v = 0, J = 2) product are identified with the C-C-O bending mode of the transition state. RRKM calculations are carried out for two limiting cases for the dynamics of K-mixing in highly vibrationally excited reactant states.

Physical Description

202 p.

Notes

OSTI; NTIS; GPO Dep.

Source

  • Other Information: TH: Thesis (Ph.D.)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Other: DE93019252
  • Report No.: LBL--34251
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 10178154
  • Archival Resource Key: ark:/67531/metadc1390019

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • May 1, 1993

Added to The UNT Digital Library

  • Nov. 28, 2018, 2:33 p.m.

Description Last Updated

  • Dec. 5, 2018, 5:23 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kim, S. K. Unimolecular photodissociation dynamics of ketene (CH{sub 2}CO): The singlet/triplet branching ratio and experimental observation of the vibrational level thresholds of the transition-state, thesis or dissertation, May 1, 1993; California. (https://digital.library.unt.edu/ark:/67531/metadc1390019/: accessed June 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen