Reconfigurable Aerial Computing System: Design and Development

PDF Version Also Available for Download.

Description

In situations where information infrastructure is destroyed or not available, on-demand information infrastructure is pivotal for the success of rescue missions. In this paper, a drone-carried on-demand information infrastructure for long-distance WiFi transmission system is developed. It can be used in the areas including emergency response, public event, and battlefield. In years development, the Drone WIFI System has developed from single-CPU platform, twin-CPU platform, Atmega2560 platform to NVIDIA Jetson TX2 platform. By the upgrade of the platform, the hardware shows more and more reliable and higher performance which make the application of the platform more and more exciting. The latest … continued below

Physical Description

xii, 116 pages

Creation Information

Gu, Yixin August 2018.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 61 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Gu, Yixin

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

In situations where information infrastructure is destroyed or not available, on-demand information infrastructure is pivotal for the success of rescue missions. In this paper, a drone-carried on-demand information infrastructure for long-distance WiFi transmission system is developed. It can be used in the areas including emergency response, public event, and battlefield. In years development, the Drone WIFI System has developed from single-CPU platform, twin-CPU platform, Atmega2560 platform to NVIDIA Jetson TX2 platform. By the upgrade of the platform, the hardware shows more and more reliable and higher performance which make the application of the platform more and more exciting. The latest TX2 platform can provide real time and thermal video transmission, also application of deep learning of object recognition and target tracing. All these up-to-date technology brings more application scenarios to the system. Therefore, the system can serve more people in more scenarios.

Physical Description

xii, 116 pages

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2018

Added to The UNT Digital Library

  • Sept. 26, 2018, 6:16 p.m.

Description Last Updated

  • Sept. 27, 2021, 12:24 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 61

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gu, Yixin. Reconfigurable Aerial Computing System: Design and Development, dissertation, August 2018; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1248501/: accessed July 17, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen