Microcantilever Based Viscosity Measurement as it Applies to Oscillation Amplitude Response

PDF Version Also Available for Download.

Description

The goal of this research is to measure viscosity via the analysis of amplitude response of a piezo driven vibrating cantilevers partially immersed in a viscous medium. As a driving frequency is applied to a piezoceramic material, the external forces acting on the system will affect its maximum amplitude. This thesis applies this principle through experimental and analytical analyses of the proportional relationship between viscosity and the amplitude response of the first natural frequency mode of the sinusoidal vibration. Currently, the few cantilever-based viscometer designs that exist employ resonant frequency response as the parameter by which the viscosity is correlated. … continued below

Physical Description

xi, 71 pages

Creation Information

Siegel, Sanford H. August 2018.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 51 times. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Siegel, Sanford H.

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The goal of this research is to measure viscosity via the analysis of amplitude response of a piezo driven vibrating cantilevers partially immersed in a viscous medium. As a driving frequency is applied to a piezoceramic material, the external forces acting on the system will affect its maximum amplitude. This thesis applies this principle through experimental and analytical analyses of the proportional relationship between viscosity and the amplitude response of the first natural frequency mode of the sinusoidal vibration. Currently, the few cantilever-based viscometer designs that exist employ resonant frequency response as the parameter by which the viscosity is correlated. The proposed piezoelectric viscometer employs amplitude response in lieu of resonant frequency response. The goal of this aspect of the research was to provide data confirming amplitude response as a viable method for determining viscosity. A miniature piezoelectric plate was mounted to a small stainless-steel cantilever beam. The tip of the cantilever was immersed within various fluid test samples. The cantilever was then swept through a range of frequencies in which the first frequency mode resided. The operating principle being as the viscosity of the fluid increases the amplitude response of cantilever vibration will decrease relatively. What was found was in fact an inversely exponential relationship between dynamic viscosity and the cantilever beam's vibrational amplitude response. The experiment was performed using three types of cantilevers as to experimentally test the sensitivity of each.

Physical Description

xi, 71 pages

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • August 2018

Added to The UNT Digital Library

  • Sept. 26, 2018, 6:16 p.m.

Description Last Updated

  • Sept. 19, 2023, 12:10 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 51

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Siegel, Sanford H. Microcantilever Based Viscosity Measurement as it Applies to Oscillation Amplitude Response, thesis, August 2018; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1248454/: accessed July 18, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen