Interface stability and defect formation during crystal growth

PDF Version Also Available for Download.

Description

Unidirectional solidification experiments have been carried out in organic crystals with the aim of improving our knowledge on the effects of constraints on the interface morphology and to increase our understanding of the growth of anisotropic materials. The experimental information shows that lateral constraints such as a sharp change in the cross-sectional area in the solid liquid interface path, can produce important changes in the microstructure if the interface morphology is planar, cellular or dendritic. The study of anisotropic materials cover several topics. It is first shown that slight anisotropy does not influence the dendrite tip selection criterion. This conclusion … continued below

Physical Description

Pages: (220 p)

Creation Information

Fabietti, L.M.R. January 8, 1991.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 22 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Unidirectional solidification experiments have been carried out in organic crystals with the aim of improving our knowledge on the effects of constraints on the interface morphology and to increase our understanding of the growth of anisotropic materials. The experimental information shows that lateral constraints such as a sharp change in the cross-sectional area in the solid liquid interface path, can produce important changes in the microstructure if the interface morphology is planar, cellular or dendritic. The study of anisotropic materials cover several topics. It is first shown that slight anisotropy does not influence the dendrite tip selection criterion. This conclusion is obtained from the analysis of the relationship between tip radius and velocity for dendrites growing under the steady state condition for two different materials, CBr{sub 4} and C{sub 2}Cl{sub 6}, which have different surface energy anisotropy values. The values of the dendrite operating parameters {sigma}* are compared with the predictions of the solvability theory and the morphological stability theory. The experiments show better agreement with the latter theory. Critical experiments have been designed and carried out to find the response functions which determine the composition and temperature of the interface as a function of velocity in faceted materials. The experiments, carried out in Napthalene-Camphor system, indicate a strong temperature dependence of the planar interface growth which can be correlated with the step growth mechanism. Experiments on the interface instability show an important dependence on the crystallographic orientation. Unidirectional solidification experiments in zone refined Napthalene confined in very thin cells (gap size {le} 50 {mu}m) have proven to be a good method to study the defect production at the solid liquid interface. 118 refs., 90 figs., 5 tabs.

Physical Description

Pages: (220 p)

Notes

OSTI; NTIS; GPO Dep.

Source

  • Other Information: Thesis (Ph.D). Thesis submitted to Iowa State University

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 8, 1991

Added to The UNT Digital Library

  • Feb. 18, 2018, 3:59 p.m.

Description Last Updated

  • April 17, 2018, 2:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 22

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fabietti, L.M.R. Interface stability and defect formation during crystal growth, report, January 8, 1991; Iowa. (https://digital.library.unt.edu/ark:/67531/metadc1103092/: accessed May 14, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen