Dynamical properties from quantum Monte Carlo by the Maximum Entropy Method

PDF Version Also Available for Download.

Description

An outstanding problem in the simulation of condensed matter phenomena is how to obtain dynamical information. We consider the numerical analytic continuation of imaginary time Quantum Monte Carlo data to obtain real frequency spectral functions. We suggest an image reconstruction approach which has been widely applied to data analysis in experimental research, the Maximum Entropy Method (MaxEnt). We report encouraging preliminary results for the Fano-Anderson model of an impurity state in a continuum. The incorporation of additional prior information, such as sum rules and asymptotic behavior, can be expected to significantly improve results. We also compare MaxEnt to alternative methods. … continued below

Physical Description

15 pages

Creation Information

Silver, R. N.; Sivia, D. S. & Gubernatis, J. E. January 1, 1989.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An outstanding problem in the simulation of condensed matter phenomena is how to obtain dynamical information. We consider the numerical analytic continuation of imaginary time Quantum Monte Carlo data to obtain real frequency spectral functions. We suggest an image reconstruction approach which has been widely applied to data analysis in experimental research, the Maximum Entropy Method (MaxEnt). We report encouraging preliminary results for the Fano-Anderson model of an impurity state in a continuum. The incorporation of additional prior information, such as sum rules and asymptotic behavior, can be expected to significantly improve results. We also compare MaxEnt to alternative methods. 17 refs., 4 figs.

Physical Description

15 pages

Notes

NTIS, PC A03/MF A01 - OSTI; GPO Dep.

Source

  • Los Alamos workshop on quantum simulations of condensed matter phenomena, Los Alamos, NM (USA), 8-11 Aug 1989

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE90001835
  • Report No.: LA-UR-89-3094
  • Report No.: CONF-8908106--2
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5639190
  • Archival Resource Key: ark:/67531/metadc1089620

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1989

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • July 12, 2020, 6:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Silver, R. N.; Sivia, D. S. & Gubernatis, J. E. Dynamical properties from quantum Monte Carlo by the Maximum Entropy Method, article, January 1, 1989; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1089620/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen