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DYNAMICAL PROPERTIES FROM QUANTUM MONTE CARLO
BY THE MAXIMUM ENTROPY METHOD

R. N. SILVER1, D. S. SIVIA1, J. E. GUBERNATIS2
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

An outstanding problem in the simulation of condensed matter phenomera is
how 0 obtain dynamical information. We consider the numerica! analytic continu-
ation of imaginary time Quantum Monte Carlo daw to obtain real frequency spectral
functions. We suggest an image reconstruction approach which has been widely ap-
plied to data analysis in experimental research, the Maximum Entrcpy Method
(MaxEnt). We report encouraging preliminary results for the Fano-Anderson model
of an impurity state in a ccntinuum. The incorporation of addidonal prior informa-
tion, such as sum rules and asymptotic behavior, can be expected to significantly im-
prove resuits. We also compare MaxEnt to alternative methods.

1. Introduction

The dynamica! properties of strongly correlated many-body systems are of
fundamental interest in most areas of condensed matter research. Quantum Monte
Carlo methods (1] for the numerical simulation of such systems provide data on
thermcdynamic Green's functions in imaginary time. While this is appropriate for
the determination of thermodynamic properties, it is difficult to extract the
dynamical propertie. from the data because an analytic continuation from imagi-
nary time to real time is required. The transform which relates the imaginary time
data to the real frequency spectral function is similar to a Laplace transform. If
one has physical reasons to believe in a model for the spectral function, the pa-
rameters of the model can be determined by fitting to the data. In the absence of a
model, which is generally the case, the problem of infering the spectral function by
inverting such transforms can be extremely ill-posed when the data are noisy and
incomplete [2].

We suggest that this analytic continuation is essentially an image reconstruc-
tion problem, which is similar to others in a wide variety of experimental fields
including radio astronomy, magnetic resonance imaging, photographic image en-
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hancement, neutron scatterirg, etc. The image sought in the present case is the
real frequency spectral function. Almost any of the successful methods for image
reconstruction should work with sufficiently good data. Given the limited data
usually available, image reconstruction methods improve as they incorporate more
prior knowledge about the quantity of interest. In choosing an image reconstruc-
tion method for our problem, the criteria to be considered should include: 1) the
conceptual foundations of the statistical inference approach; 2) the efficiency of
the method in making the most out of the prior knowledge and the data available,
with the caution that the method should tend to put structure in the image only if
there is statistically significant evidence for it in the data; and 3) the computational
cost and programming effort required.

The Maximum Entropy Method (MaxEnt) [3] meets the first two criteria
admirably, but it can score poorly on the third. For the analytic continuation
problem, however, this weakness is of little consequence because the computa-
tional cost of MaxEnt is negligible compared to the cost of the Quantum Monte
Carlo caiculatons required to produce the data. The prograinming effort required
is also negligible because we use an existing third generation commercial code for
MaxEnt image processing [4].

MaxEnt, like many successful image reconstruction techniques, can be un-
derstood in terms of Bayesian probability theory [5], also called the Law of Condi-
tional Probabilities, which provides a logically consistent approach to statistical
inference. Bayes’' theorem encapsulates the learning process: our state of knowl-
edge about some quantity of interest after an experiment (or simulation) depends
on both the relevant data and our prior state of knowledge (or the lack thereof).

For the analytic continuation problem, the most important prior knowledge
is that the spectral function is a positive additive probability distribution. Addi-
tional prior knowledge may include sum rules, symmetry properties, asymptotic
behavior, etc. MaxEnt is a special case of Bayes' theorem appropriate to such
probability distributions. It enforces the positivity of the spectral function, it tends
to put structure in the image only if warranted by the data, and for most applica-
tions it has no adjustable parameters. When there ére adjustable parameters, these
can (in principle) also be estimated using Bayesian methods. Because MaxEnt is
based on probability theory, it can provide error estimates of the reliability of the
features in the spectral function given an adequate characterization of the statisti-
cal errors in the data. There is a vast body of experience in using MaxEnt on
diverse image reconstruction problems [6], which provides insight into the images
MaxEnt will produce for our problem.

Figure | shows an example of the use of the MaxEnt method for photo-
graphic image enhancement. The photograph of a “getaway” car is blurred due to
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car motion observed with a finite camera shutter speed. The blurring function is
evident from the streak produced by the point source to the right of the license
plate. This is used as prior knowledge in a MaxEnt reconstruction. While the

number on the license plate cannot be read from the original photo, it is easily
read from the MaxEnt reconstruction.

Data Reconstruction

Figure 1

Optical deconvolution: an example of the use of MaxEat.
(Courtesy of Drs. Guil & Skilling)

The present paper describes the application of MaxEnt to the analytic con-
tinuation problem for Monte Carlo data. We use the spectral function of the
Fano-Anderson model of a bound state in a continuum for illustration [7!. We
compare MaxEnt to other approaches to the analytic continuation probiem in the
recent literature by M. Jarrell and O. Biham (8], and by S5. White et al. {9]. The
problem has also been approached by H. Schuttler and D. Scalapino {10] using
least square fitting, and by J. Hirsch {11] using Pade approximants.

1. The Analytic Continuation Problem

Quantum Monte Carlo generaies the imaginary time (Matsubara) Greens
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function
G(r) m - < T,lda(r)a*(0)) > , (D

where 7 is imaginary time, T; denotes time ordering, @' and 4 are particle crea-
tion and annhilation operators, and < ... > denotes a grand canonical ensemble
average over the states of the many-body system. Knowledge of G(7)in the range
0st<f, where f = 1/ksT, is complewe because G(r) is periodic for bosons
and antiperiodic for fermions. The dynamical properties of interest are given by
the density of single-particle states which is termed the spectral function, A(w).
This is related to G(7) by a transform

e ‘(“"F)'
+

6 = [ dwA(w) . @

where p is the chemical potential. The problem is to invert this transform in order
to determine A(w) from G(r) . Because this involves going from imaginary time to
real time, it is equivalent to analytic continuation.

The Monte Carlo calculations provide data, {Gas(7:))} (i.e. calculated at a
discrete set of 7 points, {t:}, distributed in the range 0 < v, < 8), about
G(r) which are incomplete and noisy (i.e. subject to statistical error). In this case,

the inversion is ill-posed because there exist an infinity of A(w) all of which fit the

data according to a chi-squared measure. Like the inversion of a Laplace trans-
form, the analytic continua.ion problem is extremely ill-posed, because very small

changes in the data can iead 1o very large changes in A(w). The fitting of an
A(w) to the data by minimization of chi-squared (the method of least squares) is
likely to put statistically insignificant structure into the A(w) obtained. This non-
uniqueness and extreme sensitivity to error have limited the ability to infer
A(w) from data produced by Quantum Monte Carlo calculations. The data may

also be subject to systematic error due to the limitaticns of the Quantum Monte
Carlo calculation, but we do not consider these further in this paper.

3. The Maximum Entropy Method

The image reconstruction approach we adopt is to infer the “best” A(w) ac-
cording to probability theory arguments. The method should tend to put structure



in A(w) only if there is statistically significant 2vidence for it in the data, The
method must also be capable of providing estimates of the statistical reliability of
the results. The method should enforce whatever prior knowledge about A(w) we
may have, such as positivity and sum rules; i.c.

Alw) 20 , 3)
and

jde(w)-l.o )

Bayes' theorem provides our basis for statistical reasoning. It is simply the
law of conditional probabilities:

P(X, Y] = P[X]Y] x P[Y] = P[VIX] x P[X] .  (5)

Here, P[X,Y] is the joint probability of X and ¥, and P[X]Y] is the conditional
probability of X given Y. To specialize this to the analytic continuation problem,
three quantities enter intc: the theorem. The first is the probability distribution of

A(w) before the experiment (or Monte Carlo calculation) is conducted, P[A(w)],
which is termed the Prior probability. For example, since we know that A(@) can-
not be negative, P[A(w)] should be zero for A(w) which go negative. The second
is the conditional probability of producing the data, {G4(t:) }, via the experiment
from a given A(w), which is termed the Likelihood function, P[G4(7)|A(@)] . It
represents the modification of the Prior probability on A/™) by the experiment.
The third is the conditional probability of A(w) given the data after the experiment,

P(A(w)|G4(r)) , which is termed the Posterior probability. The theorem states that
the Posterior probability is proportional to the product of the Prior probability and
the Likelihood function; i.e.

PlA(w)|G4(v)] = P[Gu(7)|A(w)] % PlA(w)] . (6)

The image to be presented, A/@) , is the A(w) which maximizes the Posterior prob-
ability. The statistical reliability of the image is tc be obtained from the variation
of P[A(w)|G4(7)] about this maximum.

The Likelihood function contains the new information provided by the ex-
periment. If the data, {Gs4(7s)}, are assumed to be independent and Gaussian
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distributed with error o,, the Likelihood function is related to the chi-squared
measure by

P[Ga(v)|A(w)] = exp (— -)éi) . (M

where

_ 2
xz - Z [Gd(ﬂ) azcj(ft)] . )
X [

Here, GA(1:) are the data which a given choice of A(w) would produce in the ab-
sence of noise. For example, if the A(w) is to be determined in pixels at discrete
frequencies, {w:}, then

PR CATOL

GAty) = ZA(w,)mm )

If one ignores the Prior probability in Eq. (6), i.e. P[A(w)] — constant , then maxi-
mizing the Posterior probability is equivalent to fitting the data by the method of
least squares, i.e. minimizing X .

The errors will be assumed to be independent in all the simulations of this
paper. Itis straightforward to generalize the Likelihood function to non-independ-
ent data. This may be important for real Monte Carlo simulations since there is
nothing in the logic of the Monte Carlo method to assure statistical independence.

The Maximum Entropy Method corresponds to a particular choice of Prior
which incorporates the prior knowledge that the spectral function is positive and
additive. In that case, a variety of different statistical inference arguments [3,12]
lead to the conclusion that the Prior should tike the form

PlA(w)] = exp (@ §) . (10)

Here, S is the information theory entropy [13] of the image, i.e.

S= Z Aw [A(w,) -m(w) - A(w;) In (f-(—l"-)-‘l) ] . (11)

m(w;)
S is defined relative to a starting model, m(w), for A(w). It is termed the default

model, because it is the image to which the Maximum Entropy Method will default
in che absence of data. It is usually chosen to be the smoothest function consistent
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with prior knowledge such as sum rules. If, before the Quantum Monte Carlo
simulation, we are completely ignorant about A(w)except for the sum rule, we

take m(w)to be flat with a magnitude to satisfy the sumn rule in the frequency

range of interest. More generally, m(w) should be chosen by the maximum en-

tr=py method using the prior knowledge (e.g. moments) as constraints (or “testable
information” [3]).

While space does not permit a detailed presentation of the variety of ration-
ales leading tc Eqs. (10-11), condensed matter scientists will understand a statisti-
cal mechanics analogy. The thermodynamic entropy is the logarithm of the num-
ber of different states by which one can arrive at a given total energy, or any other
macroscopic constrcint. Analcgously, the information theory entropy is the loga-

rithm of the number of ways by which one can arrive at a given A(®) in a Poisson

process from the default model. For a flat m(w), this is called the “monkey
argument” by the image processing comnunity [14]:

If a team of monkeys throws a very large number N of quanta randomly
at the M a priori equivalent cells of an image, then the probability of

obtaining a particular set (ny,nz, ° ' ° ,NAp) of occupation numbers
shall be proportional to the degeneracy N'/my!n;! - - - mpfl.

More generally, in a Poisson process the expected number of counts in a cell (or
pixel) is ;= a m(w,)Aw . The parameter a characterizes the degree of fluctuation
about the default model. Application of Stirling’s formula to the factorials in a
Poisson probability distribution then leads to Egs. (10-11).

Finally, the image is obtained by maximizing the Posterior probability. This
is the same as functional variation of A(@) to maximize the entropy, S, subject to a
constraint on x* with Lagrange multiplier 1/a; hence the name Maximum Entropy

Method. Clearly, 1/a conrols the relative importance of the prior knowledge and
the data. It is a statistical regularization parameter which is fixed by self-consis-
tency arguments. Before the experiment the image starts at the default model and
a= ®© . As the data improve a becomes smaller, and the image deviates from the

default model (hopefully) toward the correct A(w) acquiring sharper resolution.
In traditional (or Historic) MaxEnt, 1/a is chosen so that the image maximizes the
entropy subject to it being “feasible”, in *hat it fits the data according to ¥* < Ny,
whi  Np is the number of independent data. This is, of course, consistent with



the ¥ - probability distribution for independent Gaussian errors. In the more
modern (or Classic) MaxEnt [15], 1/a is itself determined by Bayesian arguments
which maximize the Posterior probability of a given the data, Pla|G4(r)]. The
image exhibited is the center of a probability distribution (called the “bubbie™) of
possible images. It is the Classic MaxEnt formulation that makes possible esti-
mates of the statistical significance of the features in the image.

Maximum Entropy is a statisticai inference principle, how one implements
the principle is an algorithm, choosing the appropriate prior knowledge is physics,
and incorporating it in the algorithm is an art. Prior knowledge should be built into
the default model and into the data as a constraint. The images are conditional on
the prior knowledge. The use of prior knowledge can be essential to solving some
problems, but invalid prior knowledge can also lead to spurious results. For exam-
ple, using a functional model for A(w)defined by a few parameters is a strong
form of incorporating prior knowledge. However, if the model cannot be fit to the
data, at least some of the “prior knowledge” contained in the model is wrong. In
many image processing situations, one uses the flexibility of MaxEnt to iteratively
input increasing amounts of prior knowledge (e.g. first positivity only, then include
symmetry, and so on.), or to test the validity of assumed “prior knowledge”.
Often, an initial MaxEnt image will suggest additional prior knowledge which
should be incorporated. MaxEnt images often lead to a physical model for the

quantity of interest, the parameters of which can then be estimated directly using
the raw data.

4. Examples of MaxEnt Analytic Continuation

Let us consider the spectral function shown in Fig. 2(a) termed the “truth”,
where we have binned the spectral function intc 41 pixels in the range

-Q s w-u < Q. Using this in the transform, Eq. (2), with f=10.0, Q « 5.0,
binning with Ar = 0.125, and adding 1% relative Gaussian random noise yields the
G(r) data shown in Fig. 2(b) termed the “mock data”. The problem then is to

recover the spectral function from this mock data. Fig. 2(c) shows the MaxEnt
reconstruction of the spectral function using the Classic MaxEnt algorithm. One
can see that the basic structure of the truth is recovered in the reconstruction.

However, the features at large |w-u| are broadened compared to features at
small |- u| .
Most significantly, Classic MaxEnt allo'vs one to place error bars on the



integrated intensities of the features in the image. The areas to be integrated over
are marked by arrows. The corresponding integrated intensity and estimated error

are shown. The central peak and the gap for small |w—u| are well determined,
but the side peaks and the gap at large | - 4| are less well determined.
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Figure 2  First simulation for a spactral function with only siarp lsatures, with
parameters (=S, A =0.25, B=10, and Ar =.125: a) true spactrsl function; b)
resultant mock data, G(rj, with relauve Gaussian random error of 1%; ¢)
MaxEnt reconstruction; d) reconsuruc’ion using the WSSB (9] algorithm.

We compare MaxEnt with the method of S. White, et al. (WSSB) [9). Their
method is to minimize a modified least squares measure for the data which in our
notation is



_ 2
Bhssp = T LI L5 (4w) - A+ h 0 A@IA@) - (12)

k

The first term is conventional. The second term with parameter b is designed to
encourage smoothness and, hence, minimize the structure in the reconstruction.
The thiry term with parameter h is designed to encourage (but not enforce) the
positivity of the spectral function. The authors recommend how to iteratively ad-

just tl.e parameters b and h to arrive at ) = 1.1 X2n, where X is the lowest value
attained when enforcing positivity but very little smoothness. The resulting image
is shown in Figure 2(d). This image is essentially the same as the MaxEnt image,
but it lacks information about the statistical reliability of the image. The WSSB
approach is sensible since it incorporates the additional prior knowledge of
positivity, but it is also ad hoc because there is no self consistent way of choosing
the parameters b and h. Moreover, the smoothness assumption (correlations be-
tween neighboring pixels) is invalid prior knowledge, as there are spectral func-
tions which are not smooth (such as the Fano-Anderson model we concider later).

The pathology of the smoothness assumption can be shown with the spectral

function in Fig. 3(a) which includes a sharp peak at |w - 4| = 0 and broad structure

at large |w~u|. The parameters of the simulation are the same as in Fig. 2.
Figure 3(b) shows the corresponding mock data. Figure 3(c) shows the WSSB

reconstruction at ¥ = 1.1 3, which produces spurious structure. Figure 3(d)
shows the image obtained by turning the smoothness up to achieve x° = 2.0 22,

and Figure 3(e) has further smoothing with x* = 10.0 2, . One can see that the
fits to the broad structure are improving at the expense of broadening the central
peak. Finally, Fig. 3(f) shows the MaxEnt reconstruction (symmetry was not en-
forced). It is much closer to the original image, and it permits estimates of the
statistical reliability of features in the image, as shown.

The method of Jarrell and Biham [8] also attempts to enforce smoothness
and positivity while working with data in Matsubara frequency space rather than
imaginary time. There is no explicit provision for statistical error propagation in
their method. It shows similar qualitative behavior to the WSSB method.

For a more realistic exaraple of MaxEnt analytic continuation, we consider
the spectral function of the Fano~Andercon model of an impurity state in a contin-
uum. Here, the Hamiitonian is

Heeb'b+ ) exdtdy+ D A(dib+b%a) . (13)
& ]
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where we consider a one-dimensional band with

Ay = % ; e,w-wcosk . (14)

Here £*is the creation operator for an electron on the impurity site, d} is the
creation operator for an ele~tron in the band, e. is the impurity level energy, 2w is

the bandwidth, A is the coupling between the impurity level and the band, and L is

the lattice spacing. For this model, one can analytically derive the spectral func-
tion for the impurity state from the imaginary time impurity Greens function

Go(r) w - <Te[b()b*(0)]> .  (15)

For a variety of choice of parameters, we can generate mock G»(7) data by dis-
cretizing in t and adding Gaussian random noise. We then examine the ability of
MaxEnt to recover the impurity spectral function from such data.

Figure 4 shows the resulting simulations with parameters as indicated in the
figures. In each case, the left-most figure is the spectral function for the indicated
choice of parameters, the middle figure are the mock data for G(r), and the right-
most figure is the MaxEnt reconstruction. The total area under the spectral func-
tion is one. The continuum is always chosen to extend frem -1.0 to 1.0, but the
position of the impurity level and its coupling to the continuum is varied. Discrete
swuates are split off from the continuum which countribute delta functions to the
spectral functions (indicated by the solid vertical lines) of weights Z, and Z..
N.is the number of data points of G(r); Error is the fractional standard deviation
of the error in G(r); B is the inverse temperature taken to be 30.0; and u is the
chemical potential taker: to be 0.0. The Chi Sq is the actual chi-squared #~hieved
in the MaxEnt reconstruction, to be compared with the ~,. Qualitative and semi-
quantitative featues of the tru. spectral function are reproduced by the MaxEnt
reconstruction, but there is a tendency toward broadening at large |w| and toward
cuspy structure at small |w|. The error analysis of the Classic MaxEnt method
indicates that the cuspy structure is not statistically significant. The G»(r) data
generated now has many more T points and much greater statistical accuracy then
in the simulations of Figs. 2 and 3 in order to provide sufficient information to
reconstruct the more complex spectral function. These errors are smalles than
those used in refs. [8,9,11], but they are within the range of the curreat state-of-
the-art in Quantum Monte Carlo simuvlations. The data shown in the middle of the
figure are clearly insensitive to the detai‘ed structure in the spectral function,
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which is what makes this problem extremely ill-posed. Nevertheless, one can see
that the MaxEnt images on the right of the figure have recovered the essential
features of the original spectral functions shown on the left. However, there is a
tendency to put cuspy structure in the image for small |w - 4|, and to broaden
structure at large |w-u4|. One can show that this tendency is a feature of any

image reconstruction method. The cuspy structure at small |@ - 4| can be shown

to be spurious by again using the Classic MaxEnt cption of estimating the statisti-
cal errors on the integrated intensity of that structure.

5. Conclusions

Using an image reccisiruction approach, the Maximum Entropy Method,
we have shown that imaginary time Quantum Monte Carlo data can he analytically
continued to obtain real frequency spectral functions. We have reported encourag-
ing preliminary results for the spectral function of the Fano-Anderson model of an
impurity state coupled to a continuum. We have compared our results to other
proposals in the literature. This success opens the door to obtaining dynamical
properties of quantum many body systems by Quantum Monte Carlo methods [16].

A more detailed paper [17] presents a Likelinood function analysis of stat’.-
tical error propagation (and ill-posedness) in the analytic continuation problem,
which is independent of the choice of image reconstruction method. This includes

an explanation of the tendency to put sharp structure at small |w - x| and broad

structure at large |@ - 4|, the optimization of Quantum Monte Carlo simulations,

and the incorporation of covariance of statistical error propagation in Quantum
Monte Carlo calculations.
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