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DYNAMICAL PROPERTIES FROM QUdWTJM MONTE CARLO

BY THE MAXIMUM ENTROPY MEI’HOD

R. N. SILVER1, D. S. SMA1, J. E. GUBERNA’TW

Los Alamos National Laboratoq

LQs Afamos, New Mexico 87545

ABSTFUCT
AI outstanding problem in the simulation of condensed matter phenomena is

how to obtain dynamical Information. We consider the numedca 1 analytic continu-
ation of imaginary time CWantum Monte Carlo data to obtain real frequency spectral
functions. We suggest an image reconstruction approach which has been widely a~
plied to data amlysis in experimental research, the Maximum Entrcpy Method
(MaxlSnt), We report encoumging preUrninaty results for the Fano-Andemon model
of an impurity state in a ccntlnuumm The incorpation of additional prior informa-
tion, such as sum rules and asymptotic behavior, can h expected to significantly im-
prove results, We also compare Max.Ent to alternative methods.

1. Introduction

The dynamical properties of strongly correlated many-body systems are of
fundamental interest in most areas of condensed matter research. Quantum Monte
Carlo methods [1] for the numerical simulation of such systems provide data on
tkrrnodynamic Green’s functions in imagiruuy time. While this is appropriate for
the determination of thermodynamic properties, it is difficult to extract the
dynamical propertie. from the data because an analytic continuation from imagi-
nary time to real time is required. The transform which relates the hagina~ time
data to the real frequency spectral function is similar to a bplace transform. If
one has physical reasons to believe in a model for the spectral function, the pa-
rameters of the model can be determined by fitting to the data. In the absence of a
model, which is generally the case, the problem of infenng the spectral function by
inverting such transforms can k extremely ill-posed when the data are noisy and
incomplete [2].

We suggest that this analytic continuation is essentially an image reconstruc-
tion problem, which is similar to others in a wde variety of experimental fields
including radio astronomy, magnetic resonance imaging, photographic image en-

! MS B262, Theoretical Division and Los Alamos Neutron Scatterln~ Center

a MS B262, Theoretical Division
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hancement, neutron scatterir g, etr The image sought in the present case is the
real frequency spec~l function. Almost any of the successful methods for image
reconstruction should work with sufficiently good data. Given the limited data
usually available, image reconstruction methods improve as they incorporate more
prior knowledge about the quantity of interest. Lnchoosing an image reconstruc-
tion method for our problem, the criteria to be considered should include: 1) the
conceptual foundations of the statistical inference approach; 2) the efficiency of
the method in making the most out of the prior knowledge and the data available,
with the caution that tne method should tend to put structure in the image only if
there is statistically significant evidence for it in the data; and 3) the computational
cost and programming effort required.

The Maximum Entropy Method (MaxEnt) [3] meets the first two criteria
admirably, but it can score poorly w the third. For the analytic continuation
problem, however, this weakness is of little consequence because the computa-
tional cost of MmEnt is negligible compared to the cost of the Quantum Monte
Carlo calculations required to produce the data. The programming effort required
is also negligible because we use an existing third generation commercial ccxle for
MaxEnt image processing [4].

Max.Ent, like many successful image reconstruction techniques, can be un-
derstood in terms of Bayesian probability theog [5], also cnlled the Law of Condi-
tional Probabilities, which provides a logically consistent approach to statistical
inference. Bayes’ theorem encapsulate the learning proces9: our state of knowl-
edge about some quantity of interest after an experiment (or simulation) de~nds
on both the relevant data and our prior state of knowledge (or the leek thereof’).

For the analytic continuation problem, the most important prior krmwledge
is that the spectral function is a positive additive pro~bility distribution. Addi-
tional prior knowledge may include sum rides, symme~ properties, asymptotic
behavior, etc. MaxEnt is a special case of Bayes’ theorem appropriate to such
probability distributions. [t enforces the positivity of the qMctral function, it tends
to put stnJcture in the image only if warranted by the data, and for most applica-
tions it has no adjustable parameters. When there eirc adjustable pamrneters, these
can (in principle)also be estimated using Bayesian methods. Because MaxEnt is
based on probability thco~, it can provide mor estirnata of the reliability of the

features in tk spectral function given an adequate characterization of the statisti-
cal errors in the data, There is a vast body of experience in using Max.Ent on
diverse image reconstruction problems [6], which provides insight into the images
MaxEnt will produce for our problem.

Fi~ure : shows an example of the use of the Mm&m method for photo-
graphic image enhancement The photograph of a “getaway” car is blurred due to
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car motion obscwed with a finic camem shutter speed. The blurring function is
evident from the streak produced by the point source to the right of the license
plate. This is used as prior knowledge in a Max.Ent reconstruction. While the
number on the license plate cannot be read from the original photo, it k easily
read from the MaxEnt reconstruction.

Data Reconstruction

Figure 1
Optical&convoiution: an emnple of * use of MaxlZnL

(Courtesy of Drs. Gull & Skilling)

The present paper describes the application of Mm@nt to tk analytic con-
tinuation problem for Monte Carlo data. We use the spectral fu.twtion of the
Fano-tiemon model of a bound mate in a continuum for ilhumation [7!. We
compare MaxEnt to other approaches COthe analytic continuation problem in the
recent Iiterarure by M. Jtmell and 0, Biham [8], and by S. White et al, [9]. The
problem has alm been approached by H. Schuttler and D. Scalapino
least square fitting, and by J, Hirsch (11] using I%de approxirnants,

2. TIM halytlc Contbation Problem

[10] using

Quantum Monte Carlo generates the imaginary time (Matwbara) Greens
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function
G(r) -- <Tr[u(r)u+(o)]> , (1)

where r is imaginary time, T, denotes time ordering, U+and u are particle crea-

tion and annihilation operators, and <... > denotes a grand canonical ensemble

average over the states of the many-body system. Knowledge of G(r) in the range

O s r ~ ~ , where ~ _ l/k~T, is complete because G(T) is periodic for bosons

and antipenodic for fermions. The dynamical properties of interest are given by

the density of wngle-particle states which is termed the spectral function, A(w) .

This is related to G(T)by a transform
m ~ -(wp)r

G(r) = ~ d~ A(o) -- , (2)

where v is the chemical potential. The problem is to inveti this transform in order

to determine A(u) from G(T). Because this involves going from imaginsq time to
real time, it is equivalent to analytic continuation.

The Monte Carlo calculations provide data, { GJrJ } (i .e, calculated at a

dissrete set of r points, {r~}, distributed in the range O S T~$ ~), about

G(r) which are incomplete and noisy (i,e. subject to statistical error), IfI this case,

the inversion is ill-posed because there exist an infinity of A(u) all of which fit the
data according to a chi-squared measure. Like the inversion of a bplace trans-
fmn, the analytic continuaJon problem is extremely ill-posed, because very small

changes in the data can iead to very large changes in A(u) , The fitting of an

A(u) to the data by minimization of chi-squared (the method of least squares) is

likely to put statistically insignificant structure into the A(u) obtained. This non-
uniqueness and extreme sensitivity to error have limited the ability to infer

A(u) from data produced by Quantum Monte Carlo calculations, The data may
also be subject to systematic emor due to the Iimitatimts of the Quantum Monte
Carlo calculation, but we do not consider these futiher in this paper.

3. The Mm.lnwm Entropy Method

The image recomtruction approach we adopt is to infer the “best” A(a) ac.

cording to probability theory arguments, The method should tend to put structure



in A(o) only if there is statistically significant evidence for it in the da!a, The
method must also be capable of providing estimates of the statistical reliability of

the results. The method should enforce whatever pfior knowledge about A(w) we
may have, such as positivity and sum rides; i,e.

A(o) 20 , (3)
and

] ()dto AaI =1.0 , (4)
-m

Bayes’ theorem provides our basis for statistical reasoning. It is simply the
law of conditional probabilities:

P[x,

Here, P[X,~ is the

q =P[qfl x PIYl -P[q)q x P[m . (5)

joint probability of X and Y, and ~~ U is the conditional
probability of X given l’. To specialize this to the analytic continuation problem,
three quantities enter into the theorem. The first is the probability distribution of

A(o) before the experiment (or Monte Carlo calculation) is conducted, P[A(uJ)],

which is tamed the Prior probability. For example, since we know that A(o) can-

not be negative, P[A(u)] should be zero for A(a) which go negative. The second

is the conditional probability of producing the data, ( GJ~J }, via the experiment

from a given A(uJ), which is termed the LUihmd function, PIGJr)lA(o)] . h

represents the modification of the Prior probability on A~vJ)by the experiment,

The third is the conditional probability of A(w)given the data after the experiment,

PIA(uJ)lGJr)] , which is termed the Posterior probability, The theorem statm that

the Pbstcrior probability is proportional to the product of the Rior probability and
the Likclihod function; i.e.

flA(u)lGJr)] a PIGJT)IA(u)] x P[A(@)] , (6)

The image to be presented, AI(u) , is the A(o) which maximizes the Posterior prob

ability, The statistical reliability of the image is to be obtained from the variation

of ~[A(@)lGJr)] about this maximum.
The Likelihood function contains the new information provided by the ex-

periment. If the data, {Gd(T~)}, are assumed to be independent and Gaussian
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distributed with error U&, the Likelihood
measure by

function is related to the chi-squared

2()-—,
2

(7)

where

[Gd(rJ-G rk)]2f-z # . (8)
k

Here, G~r&)are the data which a given choice of A(o) would produce in the ab

sence of noise. For example, if the A(u) is to be det.mnined in pixels tit discrete
frequencies, {~: }, then

in Eq. (6), i.e. P[A(u)] + co~ant , then maxi-

equivalent to fitting the data by the method of

to be independent in all the simulations of this

If one ignores the Prior probability
mizing the Posterior probability is

least squares, i.e. minimizing # .
The errors will be assumed

paper. h is straightfonvard to generalize the Likelihood function to non-independ-
ent data. This may be important for real Monte Carlo simulations since there is
nothing in the logic of the Monte Carlo method to assure statistical independence.

The Maximum Entropy Method corresponds to a particular choice of Rior
which incorporates the prior knowledge that the spectral function is positive and
additive. In that case, a variety of different statistical inference arguments [3,12]
lead to the conclusion that the Prior should t~ke the form

P[A(u)] = exp (a $ . (lo)

Here, S is the information theo~ entropy [13] of the image, i.e.

S is defined relative to a starting modrl, M(o), for A(o) . h is termed the default
model, because it is the image to which the Maximum Entropy Method will default
in che absence of data. h is usually chosen to be the smoothest function consistent
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with prior knowledge such as sum rules, If, before the Quantum Monte Carlo

simulation, we are completely ignorant about A(w)except for the sum rule, we

take ~(@) to be flat with a magnitude to satisfy the sum rule in the frequency

range of interest. More generally, m(o) should be chosen by the maximum en-
tr~py method using the prior knowledge (e.g. moments) as constraints (or “testable
information” [3]).

While space does not -permit a detailed presentation of the variety of ration-
ales leading to Eqs. (10-11), condensed matter scientists will understand a statisti-
cal mechanics analogy. The thermodynamic entropy is the logarithm of the num-
ber of different states by which one can arrive at a given total energy, or any other
macroscopic constraint. AnalGgcm.sly,the information theory entropy is the loga-

rithm of the number of ways by which one can arrive at a given A(o) in a Poisson

prcwess from the dcfauh model. For a flat ~(uJ) , this is called the “monkey
argument” by the image processing comnmnity [14]:

If a team of monkeysthrows a ve~ large number N of quanta randomly
at the M a priori equivalent cells of an image, then the probability of

obtaining a pa~icular set ( nI, n2, “ “ “ , nM) of occupation numberf

shall be propo~ional to the degeneracy M/nl %! “ “ - n~! .

More generalIy, in a Fbisson process the expected number of counts in a cell (or

pixel) is ~ = u m(a@A@. The parameter a characterizes the degree of fluctuation
about the default model. Application of Stirling’s formula to the factorials in a
Poisson probability distribution then leads to as. (10-1 1),

Finally, the image is obtained by maximizing the Posterior probability. This

is the same as functional variation of A(u) to maximize the entropy, S, subject to a

constraint on # with Iqrange multiplier l/a; nence * name Muximum Mropy

Method. Clearly, l/a comrols the relative importance cd the prior knowledge and
the data. It is a statistical regularization parameter which is fixed by self-consis-
tency arguments. Before the experiment the image starts at the default model and
a = 00. A the data improve a becomes smaller, and the image deviates from the

default mdcl (hopefully) toward the correct A(u) acquihng sharper resolution.

In traditional (or Histotic) MaxEnt, l/a is chosen so that the image maximizes che

entropy subject to it king “feasible”, in ‘hat it fits the data according to ~ s N, ,

whi Nr is the number of independent data, This is, of course, consistent with
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the f - probability distribution for independent Gaussian errors. In the more

modem (or Clm~”c)MaxEnt [15], I/u is itself determined by Bayesian arguments

which maximize the Rxtenor probability of a given the data, P[alG~(t)] . The
image exhibited IS the center of a probability distribution (called the “bubble”) of
possible images. lt is the Classic MaxEnt formulation that makes pi)ssible esti-
mates of the statistical significance of the features in the image.

Maximum Entropy is a statistical inference principle, how one implements
the principle is an algorithm, choosing the appropriate prior knowledge is physics,
and incorporating it in the algorithm is an am Rior knowledge should be built into
the default model and into the data as a constraint. The images are conditional on
the prior knowledge. The use of prior knowledge can be essential to solving some
problems, but invalid prior knowledge can also lead to spurious results. For exam-

ple, using a functioml model for A(o) defined by a few parameters is a strong
form of incorporating prior knowledge. However, if the model cannot be fit to the
data, at least SO- of the “prior knowledge” contained in the model is wrong. In
many image processing situations, one uses h flefibiliw of ~~t M i~~tively
input increasing amounts of prior knowledge (e.g. first positivity only, then include
symmetry, and so on.), or to ust the validity of assumed “prior knowledge”.
Often, an initial MaxEnt image will suggest additioml prior knowledge which
should be incorporated. MaxEnt images often lead to a physical model for the
quantity of interest, the parameters of which can then be estimated directly using
the raw data.

4. Examples of MaxEnt Analytic Continuation

Let us consider the spectral function shown in Hg. 2(a) termed the “truth”,
where we have binned the spectral function into 41 pixels in the range

-$2 S o-p < Q, Using this in the transform, Eq. (2), with ~= 10.0, 0 = 5.0,

binning with Ar = 0.125, and adding 1% relative Gaussian random noise yields the

G(r) data shown in 13g. 2(b) termed the “mock data”. The problem then is to

recover the spectral function from this mock data. Fig. 2(c) shows the Mafint
reconstruction of the spectral function using the Classic MaxEnt algorithm. One
can see that the basic structure of the mth is recovered in the reconstruction.

However, the features at large ]@-PI are broadened compared to features at

small I@-#l .
Most significantly, Classic MaxEnt allows one to place error bars on the

-8-



integrated intensities of the features in the image. The areas to be integmed over
are marked by arrows. The corresponding integrated intensity and estimated emor

are shown. The central peak and the gap for small I@ -PI are well determined,

but the side paks and the gap at large

-4 -2 0 2 4

W-*

MoxKnt Reconstruction

L r 1 & , I 4

-4 -2 0 2 4

Q-B

]~ -Al are less well determined.
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Mock Dato
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1 I 1 r

(b) :
● I

1-*
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rasdtm mock data, G(r) , wkh rolstivc (lauuian mndom mror of 1%; c)

Mmc.Entracortstwxbn; cl) rsconstrudon using iha WSSB [9] al~orithm.

We compare MaxEnt with the method of S. W%@, et al. (WSSB) [9). Their
method is to minimize a modified least squares measure for the data which in our
notation is
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[G(zJ - G/@)12
%ihSB “ ~ ~ + b ~ (A(@i) - A(ti/+1))2 + ~ ~ 8(G A(Oi))A2(~I) - (12)

k k i 1

The first term is conventional. The second term with parameter b is designed to
encourage smoothness and, hence, minimize the structure in the reconstruction.
The th.h tem with parameter h is designed to encourage (but not enforce) the
positivity of the spectral function. The authors recommend how to iteratively ad-

just tihe parameters b and h to arrive at 2? = 1.1 Z!ti, where ~~h is the lowest value
attained when enforcing positivity but very little smoothness. The resulting image
is shown in Figure 2(d). This image is essentially the same as the MaxEnt image,
but it lacks information about the statistical reliability of the image. The WSSB
approach is sensible since it incorporates the additional prior knowledge of
positivity, but it is also ad hoc because there is no self consistent way of choosing
the parameters b and h. Moreover, the smoothness assumption (correlations be-
tween neighboring pixels) is invalid prior knowledge, as there are spectral func-
tions which are not smooth (such as the FanO-Anderson model we consider later),

The pathology of the smoothness assumption can be shown with the spectral

function in Fig. 3(a) which includes a sharp peak at 10 -#l= Oand broad structure

at large @ -PI . The parameters of the simulation are the same as in Fig. 2.

Figure 3(b) shows the corresponding mock data. Figure 3(c) shows the WSSB

reconstmction at # = 1.1 #~ which produces spurious structure. Figure 3(d)

shows the image obtained by turning the srt100thnesS Up tO achieve ~ = 2.0 #rein,

and Figure 3(e) has further smoothing with # -10.0 dti . One can see that the
fits to the broad smJcture are improving at the expense of broadening the central
peak. Finally, 13g. 3(f) shows the Mm&t reconstruction (symme~ was not en-
forced). It is much closer to the original image, and it pcnnits estimates of the
statistical reliability of features in the image, as shown.

The method of Jarrell and Warn [8] also attempts to enforce smoothness
and positivity while working with data in Matsubara frequency space rather than
imaginary tire. There is no explicit provision for statistical enor propagation in
their mettmd. It shows similar qualitative behavior to the WSSB method,

For a more realistic example of MaxEnt analytic continuatiori, we consider
the spectral function of the Fano-hclernn model of an impurity state in a contin-
uum. Here, the Harnihcmian is
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where we consider a one-dimensional

Ak-
[

c
z;

band with

e~w- Wcosk . (14)

Here 6+is the creation operator for an electron on the impurity site, u~ is the
creation operator for an electron in the band, ec is the impurity level energy, 2Wis

the bandwidth, Ahis the coupling between the impurity level and the band, and L is
the lattice spacing. For this model, one can analytically derive the spectral func-
tion for the impurity state from the imaginary time impurity Greens function

Gb(r) -- < Tr [6(@6+(0)] > . (15)

For a variety of choice of parameters, we can generate mock c~(r) data by dis-
cretizing in z and adding Gaussian random noise. We then examine the ability of
MaxEnt to recover the impurity spectral function from such data.

Figure 4 shows the resulting simulations wit!! parameters as indicated in the
figures. In each case, the left-most figure is the spectral function for the indicated
choice of parameters, the middle figure are the mock data for G(r) , and the right-
most figure is the MaxEnt reconstruction. The total area under the spectral ftmc-
tion is one. The continuum is always chosen to extend from -1.0 to 1.0, but the
position of the impurity level and its coupling to the continuum is varied. Discrete
s~tes are split off from the continuum which mmrnbute delta functions to the

spectral functions (indicated by the solid vertical lines) of weights z+ and Z- .
N, is the number of data pointg of C(r) ; Error is the fractional standard deviation

of the error in C(r) ; P is the inverse temperature taken to be 30.0; and M is the

chemical pcwntial taken to be 0.0. The Chi Sq is the actual chi-squared nhievcd
in the MaxEnt reconstruction, to be compared with the N,. Qualitative and semi-
quantitative featues of the t- spectral function are reproduced by the MaxEnt
reconstmction, but there is a tendency toward broadening at large ]uI and toward
cuspy st.mcture at small IuI. The emor analysi~ of the Classic MaxEnt method

indicates that the cuspy structure is not statistically significant. The Gb(r)data

generated now has many more r points and much greater statistical accuracy then
in the simulations of Figs, 2 and 3 in order to provide sufficient information to
reconstruct the more complex spectral function. These emws are smaller than

those used in refs. [8,9,11], but they are within the range of the currel~t state-of-
the-art in Quantum Monte Carlo simldations, The data shown in the middle of the
figure are clearly insensitive to the detai!cd structure in the spectral function,
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which is what makes this problem extremely ill-posed. Nevertheless, one can see
that the MimEnt images on the right of the figure have recovered the essential
features of the original spectral functions shown on the Ie(t. However, there is a

tendency to put cuspy structure in the image for small IU-PI , and to broaden

structure at large la - yl . One can show that this tendency is a feature of any

image reconstruction method, The cuspy structure at small Iu -PI can be shown
to be spurious by again using the Classic MaxEnt option of estimating the statisti-
cal errors on the integrated intensity of that structure,

5. Conclusions

Using an image reccmstruction approach, the Maximum Entropy Method,
we have shown that imaginmy time Quantum Monte Carlo data can be analytically
continued to obtain real frequency spectral functions. We have reported encourag-
ing preliminary results for the spectral function of the FanO-Anderson model of an
impurity state coupled to a continuum. We have compared our results to other
proposals in the literature. This success opens the door to obtaining dynamical
properties of quantum many body systems by Quantum Monte Carlo methods [16].

A more detailed paper [17] presents a Likelihood function analysis of stati t
tical error propagation (and ill.-posedness) in the analytic continuation problem,
which is independent of the choice of image reconstruction method, This includes

an explanation of the tendency to put sharp structure at small IUJ- Ill and broad

structure at large IU- Al, the optimization of Quantum Monte Carlo simulations,
and the incorporation of covariance of statistical error propagation in Quantum
Monte Carlo calculations.
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