Laser deposition and laser modification of high-temperature superconducting thin films

PDF Version Also Available for Download.

Description

Applications of high-temperature superconductors (HTSC) may require epitaxial films with {Tc}{ge}77 K, and J{sub c}{ge}10{sup 6} A/cm{sup 2}. In situ pulsed laser deposition (PLD) is suitable for fabrication of such films. We report parametric studies on the effect of laser and processing parameters on the crystallinity, epitaxy and electrical properties of laser-deposited HTSC thin films. In addition, several laser-based processes were used to modify the electrical properties ({Tc} and J{sub c}) of PLD thin films. A direct-write laser heating (1.06 {mu}m at {approx}0.5 kW/cm{sup 2} for {approx}5 min) process in an oxygen atmosphere at {approx}590 Torr was shown to selectivity … continued below

Physical Description

12 pages

Creation Information

Dye, R. C.; Foltyn, S. R.; Nogar, N. S.; Wu, X. D.; Peterson, E. J. & Muenchausen, R. E. January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Applications of high-temperature superconductors (HTSC) may require epitaxial films with {Tc}{ge}77 K, and J{sub c}{ge}10{sup 6} A/cm{sup 2}. In situ pulsed laser deposition (PLD) is suitable for fabrication of such films. We report parametric studies on the effect of laser and processing parameters on the crystallinity, epitaxy and electrical properties of laser-deposited HTSC thin films. In addition, several laser-based processes were used to modify the electrical properties ({Tc} and J{sub c}) of PLD thin films. A direct-write laser heating (1.06 {mu}m at {approx}0.5 kW/cm{sup 2} for {approx}5 min) process in an oxygen atmosphere at {approx}590 Torr was shown to selectivity regenerate high-{Tc} material in microscopic domains from films that were partially deoxygenated. In separate work, electrical responses and crystallinity of HTSC films were measured as a function of excimer laser exposure using fluences in the range 20--150 mJ/cm{sup 2}. The critical current and boundary layer could be modified with a high degree of accuracy. 17 refs., 4 figs.

Physical Description

12 pages

Notes

OSTI; NTIS; GPO Dep.

Source

  • 180. meeting of the Electrochemical Society, Phoenix, AZ (United States), 13-18 Oct 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE92002518
  • Report No.: LA-UR-91-3463
  • Report No.: CONF-911047--8
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5097649
  • Archival Resource Key: ark:/67531/metadc1057681

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Aug. 31, 2020, 1:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Dye, R. C.; Foltyn, S. R.; Nogar, N. S.; Wu, X. D.; Peterson, E. J. & Muenchausen, R. E. Laser deposition and laser modification of high-temperature superconducting thin films, article, January 1, 1991; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1057681/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen