Search Results

Producing a Film on Oil Spill Research for the Public
The Deepwater Horizon oil drilling rig exploded on April 20, 2010, off the coast of Louisiana in the Gulf of Mexico. Following the spill, British Petroleum, leaser of the rig, set up a funding institution known as the Gulf of Mexico Research Initiative (GoMRI) to support research and understanding of the spill on the environments and peoples of the gulf. This outreach project was created alongside research of the RECOVER consortium, funded by GoMRI, to communicate what is happening within research labs around the country to understand the effect that the spill had on fish in pelagic and coastal regions of the gulf. The outreach project is composed of a short film (Deepwaters: The Science of a Spill, 18 min) and related outreach materials posted to Instagram (@FishandOilSpills).
Dynamics of Stream Fish Metacommunities in Response to Drought and Re-connectivity
This dissertation investigates the spatio-temporal dynamics of intermittent stream fish metacommunities in response drought-induced fragmentation and re-connectivity using both field and experimental approaches. A detailed field study was conducted in two streams and included pre-drought, drought, and post-drought hydrological periods. Fish assemblages and metacommunity structure responded strongly to changes in hydrological conditions with dramatic declines in species richness and abundance during prolonged drought. Return of stream flows resulted in a trend toward recovery but ultimately assemblages failed to fully recover. Differential mortality, dispersal, recruitment among species indicates species specific responses to hydrologic fragmentation, connectivity, and habitat refugia. Two manipulative experiments tested the effects of drought conditions on realistic fish assemblages. Fishes responded strongly to drought conditions in which deeper pools acted as refugia, harboring greater numbers of fish. Variability in assemblage structure and movement patterns among stream pools indicated species specific habitat preferences in response predation, resource competition, and desiccation. Connecting stream flows mediated the impacts of drought conditions and metacommunity dynamics in both experiments. Results from field and experimental studies indicate that stream fish metacommunities are influenced by changes in hydrological conditions and that the timing, duration, and magnitude of drought-induced fragmentation and reconnecting stream flows have important consequences metacommunity dynamics.
Population Dynamics of Zebra Mussels (Dreissena Polymorpha) in a North Texas Reservoir: Implications for Invasions in the Southern United States
This dissertation has two main objectives: first, quantify the effects of environmental conditions on spatio-temporal spawning and larval dynamics of zebra mussels (Dreissena polymorpha [Pallas 1771]) in Lake Texoma, and second, quantify the effects of environmental conditions on survival, growth, and reproduction of young of the year (YOY) juvenile zebra mussels. These biological responses directly influence population establishment success and invasive spread dynamics. Reproductive output of the zebra mussel population in Lake Texoma was significantly related to water temperature and lake elevation. Annual maximum larval (veliger) density decreased significantly indicating a population crash, which was likely caused by thermal stress and variability of lake elevation. In 2011, temperatures peaked at 34.3°C and lake elevation decreased to the lowest level recorded during the previous 18 years, which desiccated a substantial number of settled mussels in littoral zones. Estimated mean date of first spawn in Lake Texoma was observed approximately 1.5 months earlier than in Lake Erie, and peak veliger densities were observed two months earlier. Veligers were observed in the deepest oxygenated water after lake stratification. During a 69-day in situ experiment during summer in Lake Texoma, age-specific mortality of zebra mussels was generally high until temperatures decreased to approximately 28°C, which was observed after lake turnover in late summer. No study organism died after temperatures decreased to less than 26°C, which indicates individuals that survive high summer temperatures are likely to persist into autumn/winter. Shell length growth and soft tissue growth rates were related to temperature and chlorophyll-a concentration, respectively. Growth rates of study organisms were among the highest ever reported for D. polymorpha. Water temperature and body size influenced reproduction of YOY zebra mussels in Lake Texoma. Fecundity of females were positively related to temperature; however, sperm production was negatively related to temperature, which indicates males could be more …
Modeling the Effects of Chronic Toxicity of Pharmaceutical Chemicals on the Life History Strategies of Ceriodaphnia Dubia: a Multigenerational Study
Trace quantities of pharmaceuticals (including carbamazepine and sertraline) are continuously discharged into the environment, which causes concern among scientists and regulators regarding their potential long-term impacts on aquatic ecosystems. These compounds and their metabolites are continuously interacting with the orgranisms in various life stages, and may differentially influence development of embryo, larvae, juvenile, and adult stages. To fully understand the potential ecological risks of two candidate pharmaceutical chemicals (carbamazepine (CBZ) and sertraline (SERT)) exposure on survival, growth and reproduction of Ceriodaphnia dubia in three sucessive generations under static renewal toxicity test, a multigenerational approach was taken. Results indicate that SERT exposure showed higher sensitivity to chronic exposure to C. dubia growth and reproduction than CBZ exposure. The lowest concentration to affect fecundity and growth was at 50 µg L-1 SERT in the first two generations. These parameters become more sensitive during the third generation where the LOEC was 4.8 µg L-1. The effective concentrations (EC50) for the number of offspring per female, offspring body size, and dry weight were 17.2, 21.2, and 26.2 µg SERT L-1, respectively. Endpoints measured in this study demonstrate that chronic exposure of C. dubia to SERT leads to effects that occur at concentrations an order of magnitude higher than predicted environmental concentrations indicating potential transgenerationals effects. Additionally, a process-based dynamic energy budget (DEB) model is implemented to predict the simulated effects of chronic toxicity of SERT and CBZ to C. dubia individual behavior at laboratory condition. The model‘s output indicates the ecotoxicological mode of action of SERT exposure, which acts on feeding or assimilation with an effect that rapidly saturates at higher concentrations. Offspring size decreases with the toxic effects on feeding, and offspring number is thus less affected than total investment in reproduction. Consequently, CBZ affects direclty in reproduction which are captured by DEBtox …
The Effect of Natural Gas Well Setback Distance on Drillable Land in the City of Denton, Texas
Municipalities protect human health and environmental resources from impacts of urban natural gas drilling through setback distances; the regulation of distances between well sites and residences, freshwater wells, and other protected uses. Setback distances have increased over time, having the potential to alter the amount and geographical distribution of drillable land within a municipality, thereby having implications for future land use planning and increasing the potential for future incompatible land uses. This study geographically applies a range of setback distances to protected uses and freshwater wells in the city limits of Denton, Texas to investigate the effect on the amount of land remaining for future gas well development and production. Denton lies on the edge of a productive region of the Barnett Shale geological formation, coinciding with a large concentration of drillable land in the southwestern region of the study area. This region will have the greatest potential for impacts to future municipal development and land use planning as a result of future gas well development and higher setback standards. Given the relatively high acreage of drillable land in industrially zoned subcategory IC-G and the concern regarding gas well drilling in more populated areas, future drilling in IC-G, specifically in IC-G land cover classes mowed/grazed/agriculture and herbaceous, would have the least impact on residential uses and tree cover, as well as decreasing the potential for future incompatible land uses.
Irrigation Methods and Their Effects on Irrigation Water Efficiency in High Tunnels
Improving water efficiency is and will continue to be a top concern to meet the world food production demands for a growing population. By having a clear understanding of water efficiencies, communities will be able to address these concerns from an economic standpoint and use more productive methods to grow food and limit water consumption. This study examines the water efficiencies of three irrigation methods over a single growing season in southeastern Oklahoma. Two crops, tomatoes and cucumbers, were grown using drip irrigation, a self-wicking container, and a non-circulating hydroponics barrel. Results at the end of the season showed the drip irrigation method had the highest water efficiency in terms of yield of product over water applied for both crops. The drip irrigation method also had the lowest associated set up costs and second lowest time requirements after the hydroponics method. These results were found to be consistent with other studies that compared drip irrigation to other irrigation methods and showed drip to have the highest water efficiencies.
Quantifying Forest Vertical Structure to Determine Bird Habitat Quality in the Greenbelt Corridor, Denton, Tx
This study presents the integration of light detection and range (LiDAR) and hyperspectral remote sensing to create a three-dimensional bird habitat map in the Greenbelt Corridor of the Elm Fork of the Trinity River. This map permits to examine the relationship between forest stand structure, landscape heterogeneity, and bird community composition. A biannual bird census was conducted at this site during the breeding seasons of 2009 and 2010. Census data combined with the three-dimensional map suggest that local breeding bird abundance, community structure, and spatial distribution patterns are highly influenced by vertical heterogeneity of vegetation surface. For local breeding birds, vertical heterogeneity of canopy surface within stands, connectivity to adjacent forest patches, largest forest patch index, and habitat (vegetation) types proved to be the most influential factors to determine bird community assemblages. Results also highlight the critical role of secondary forests to increase functional connectivity of forest patches. Overall, three-dimensional habitat descriptions derived from integrated LiDAR and hyperspectral data serve as a powerful bird conservation tool that shows how the distribution of bird species relates to forest composition and structure at various scales.
Ecological Responses to Severe Flooding in Coastal Ecosystems: Determining the Vegetation Response to Hurricane Harvey within a Texas Coast Salt Marsh
Vegetative health was measured both before and after Hurricane Harvey using remotely sensed vegetation indices on the coastal marshland surrounding Galveston Island's West Bay. Data were recorded on a monthly basis following the hurricane from September of 2005 until September of 2019 in order to document the vegetation response to this significant disturbance event. Both initial impact and recovery were found to be dependent on a variety of factors, including elevation zone, spatial proximity to the bay, the season during which recovery took place, as well as the amount of time since the hurricane. Slope was also tested as a potential variable using a LiDAR-derived slope raster, and while unable to significantly explain variations in vegetative health immediately following the hurricane, it was able to explain some degree of variability among spatially close data points. Among environmental factors, elevation zone appeared to be the most key in determining the degree of vegetation impact, suggesting that the different plant assemblages that make up different portions of the marsh react differently to the severe flooding that took place during Harvey.
American Lawn Addictions: Effects of Environmental Education on Student Preferences for Xeriscaping as an Alternative in North Central Texas, USA
Urban land use and land cover has changed in the USA, giving rise to the American lawn – manicured, resource-intensive, and non-native. Green infrastructure design has been suggested in the literature as a potential alternative to the American lawn when managed as native xeriscapes, which require little to no irrigation after establishment. Given the influence of public preference on landscaping decisions, what is the relationship between the perceived value and ecological benefits of the American lawn compared to such alternatives? Few studies have explored this question in addition to the effects of college courses on influencing student preferences, as future stakeholders, towards native xeriscapes as alternatives to the American lawn. This research measured the effects of an introductory environmental education (EE) course on measurably influencing undergraduate student preferences for four xeriscapes as alternatives to the American lawn. To measure these effects, this study utilized the perceptions of 488 students enrolled in an indirect introductory EE course and 131 students enrolled in an introductory non-EE course. Three key results emerged from this research. Students preferred the American lawn more than xeriscape alternatives, irrespective to course enrolled. Introductory non-EE did not have an effect on student preferences, whereas indirect introductory EE did show some effects on student preferences. Lastly, student preferences were negatively associated with NPP per photosynthetically active square meter. The data from this study suggests that indirect introductory EE does not shift aesthetic landscape preferences towards pro-environmental alternatives. These results show promise for shifting such preferences via more direct EE approaches.
Developing a Forest Gap Model to Be Applied to a Watershed-scaled Landscape in the Cross Timbers Ecoregion Using a Topographic Wetness Index
A method was developed for extending a fine-scaled forest gap model to a watershed-scaled landscape, using the Eastern Cross Timbers ecoregion as a case study for the method. A topographic wetness index calculated from digital elevation data was used as a measure of hydrologic across the modeled landscape, and the gap model modified to have with a topographically-based hydrologic input parameter. The model was parameterized by terrain type units that were defined using combinations of USDA soil series and classes of the topographic wetness index. A number of issues regarding the sources, grid resolutions, and processing methods of the digital elevation data are addressed in this application of the topographic wetness index. Three different grid sizes, 5, 10, and 29 meter, from both LiDAR-derived and contour-derived elevation grids were used, and the grids were processed using both single-directional flow algorithm and bi-directional flow algorithm. The result of these different grids were compared and analyzed in context of their application in defining terrain types for the forest gap model. Refinements were made in the timescale of gap model’s weather model, converting it into a daily weather generator, in order to incorporate the effects of the new topographic/hydrologic input parameter. The precipitation model was converted to use a Markov model to initiate a sequence of wet and dry days for each month, and then daily precipitation amounts were determined using a gamma distribution. The output of the new precipitation model was analyzed and compared with a 100-year history of daily weather records at daily, monthly, and annual timescales. Model assumptions and requirements for biological parameters were thoroughly investigated and questioned. Often these biological parameters are based on little more than assumptions and intuition. An effort to base as many of the model’s biological parameters on measured data was made, including a new …
The impact of invertebrates to four aquatic macrophytes: Potamogeton nodosus, P. illinoensis, Vallisneria americana and Nymphaea mexicana.
This research investigated the impact of invertebrates to four species of native aquatic macrophytes: V. americana, P. nodosus, P. illinoensis, and N. mexicana. Two treatments were utilized on each plant species, an insecticide treatment to remove most invertebrates and a non-treated control. Ten herbivore taxa were collected during the duration of the study including; Synclita, Paraponyx, Donacia, Rhopalosiphum, and Hydrellia. Macrophyte biomass differences between treatments were not measured for V. americana or N. mexicana. The biomasses of P. nodosus and P. illinoensis in non-treated areas were reduced by 40% and 63% respectively. This indicated that herbivory, once thought to be insignificant to aquatic macrophytes, can cause substantial reductions in biomass.
Soil and Forest Variation by Topography and Succession Stages in the Greenbelt Corridor, Floodplain of the Elm Fork of the Trinity River, North Texas.
The Greenbelt Corridor (GBC), located in a floodplain of the Elm Fork of the Trinity River, contains patches of bottomland forest and serves as part of Lake Lewisville’s flood control backwaters. This study examines forest structure and composition in relation to topographic position and forest stage in the GBC. Thirty two plots were surveyed within various stage classes, topographic positions, and USDA soil types. Trees were identified and measured for height and DBH. Density, basal area, and importance value for each of species was calculated. Soil and vegetation were analyzed using ANOVA, Principal Component Analysis, Canonical Correlation, Canonical Correspondence Analysis and Cluster Analysis. Tests confirmed that calcium carbonate and pH show significant differences with topographic positions but not with forest stage. Potassium shows no significant difference with soil texture class. Sand shows a strong negative correlation with moisture, organic matter, organic carbon and negative correlation with calcium carbonate and potassium. Silt shows positive correlation with moisture, organic matter, organic carbon, and calcium carbonate. Clay shows strong positive correlation with moisture, organic matter and organic carbon but negative correlations with pH. Swamp privet is dominant tree types in wetland forest. Sugarberry cedar elm, green ash and American elm are widely distributed species in the study area covering low ridges, flats, and slough. In total, density is significantly different in wetland low forest and late successional stage and basal area is significantly different in early successional stage and late successional stage. Other results show that clay is negatively correlated with American elm but positively correlated with cedar elm. Organic matter and moisture shows a strong positive correlation with cedar elm. Calcium carbonate is associated with green ash and swamp privet, sand is associated with sugarberry and red mulberry, silt and pH with cedar elm and bur oak.
Bioconcentration of Triclosan, Methyl-Triclosan, and Triclocarban in the Plants and Sediments of a Constructed Wetland
Triclosan and triclocarban are antimicrobial compounds added to a variety of consumer products that are commonly detected in waste water effluent. The focus of this study was to determine whether the bioconcentration of these compounds in wetland plants and sediments exhibited species specific and site specific differences by collecting field samples from a constructed wetland in Denton, Texas. The study showed that species-specific differences in bioconcentration exist for triclosan and triclocarban. Site-specific differences in bioconcentration were observed for triclosan and triclocarban in roots tissues and sediments. These results suggest that species selection is important for optimizing the removal of triclosan and triclocarban in constructed wetlands and raises concerns about the long term exposure of wetland ecosystems to these compounds.
Assessment of Radio-Tagged Grass Carp (Ctenopharnygodon idella) Dispersion, Vegetation, and Temperature Preferences in North Lake Reservoir
Twenty-nine (Group One, June 8,1995) grass carp (Ctenopharyngodon idella) and five (Group Two, April 18, 1996) grass carp were radio-tagged to monitor movement patterns and habitat preferences on North Lake, a 335 hectare multi-use reservoir located in Irving, Texas. Overall fish mean Average Daily Movement (ADM) rates were 49.2 meters/day (during Half One, 6/8/95-11/30/95) and 5.3 meters/day (during Half Two, 12/14/95-6/6/96). Aquatic macrophtye distribution data were obtained. Radio-tagged grass carp were located in Hydrilla verticillata infested areas increasingly throughout the study, however, percent frequency of Hydrilla along 15 transects did not decrease. Radio-transmitters were equipped with temperature-sensors (10-35 Celsius range). Results indicated that radio-tagged grass carp showed no avoidance of areas of North Lake with elevated water temperatures. Radio-tagged grass carp dispersed quickly from stocking point, then moved into littoral areas infested with Hydrilla. After an initial movement period, most fish remained in a localized area.
The impact of climate and flooding on tree ring growth of Fraxinus pennsylvanica in north-central Texas.
Tree cores of Fraxinus pennsylvanica were used in a dendrochronological analysis investigating the species' responses to climate and flooding. The objective was to develop a model that incorporates the effects of precipitation, temperature, and flooding on radial growth in this species in north-central Texas. The trees exhibited strong climatic signals. The study clearly shows that all three factors have significant impacts on tree ring growth both prior to and during growth; however, the nature and extent of these impacts are highly dependent on what time of year they occur. The large temporal variations in growth responses emphasize the importance of considering the timing of environmental events when studying tree growth responses.
The Effects of Air Pollution on the Intestinal Microbiota: A Novel Approach to Assess How Gut Microbe Interactions with the Environment Affect Human Health
This thesis investigates how air pollution, both natural and anthropogenic, affects changes in the proximal small intestine and ileum microbiota profile, as well as intestinal barrier integrity, histological changes, and inflammation. APO-E KO mice on a high fat diet were randomly selected to be exposed by whole body inhalation to either wood smoke (WS) or mixed vehicular exhaust (MVE), with filtered air (FA) acting as the control. Intestinal integrity and histology were assessed by observing expression of well- known structural components tight junction proteins (TJPs), matrix metallopeptidase-9 (MMP-9), and gel-forming mucin (MUC2), as well known inflammatory related factors: TNF-α, IL-1β, and toll-like receptor (TLR)-4. Bacterial profiling was done using DNA analysis of microbiota within the ileum, utilizing 16S metagenomics sequencing (Illumina miSeq) technique. Overall results of this experiment suggest that air pollution, both anthropogenic and natural, cause a breach in the intestinal barrier with an increase in inflammatory factors and a decrease in beneficial bacteria. This evidence suggests the possibility of air pollution being a potential causative agent of intestinal disease as well as a possible contributing mechanism for induction of systemic inflammation.
Characterizing Storm Water Runoff from Natural Gas Well Sites in Denton County, Texas
In order to better understand runoff characteristics from natural gas well sites in north central Texas, the City of Denton, with assistance through an EPA funded 104b3 Water Quality Cooperative Agreement, monitored storm water runoff from local natural gas well sites. Storm water runoff was found to contain high concentrations of total suspended solids (TSS). Observed TSS concentrations resulted in sediment loading rates that are similar to those observed from typical construction activities. Petroleum hydrocarbons, in contrast, were rarely detected in runoff samples. Heavy metals were detected in concentrations similar to those observed in typical urban runoff. However, the concentrations observed at the gas well sites were higher than those measured at nearby reference sites. Storm water runoff data collected from these sites were used to evaluate the effectiveness of the water erosion prediction project (WEPP) model for predicting runoff and sediment from these sites. Runoff and sediment predictions were adequate; however, rainfall simulation experiments were used to further characterize the portion of the site where drilling and extraction operations are performed, referred to as the "pad site." These experiments were used to develop specific pad site erosion parameters for the WEPP model. Finally, version 2 of the revised universal soil loss equation (RUSLE 2.0) was used to evaluate the efficiency of best management practices (BMPs) for natural gas well sites. BMP efficiency ratings, which ranged from 52 to 93%, were also evaluated in the context of site management goals and implementation cost, demonstrating a practical approach for managing soil loss and understanding the importance of selecting appropriate site-specific BMPs.
A Comparison of Mercury Localization, Speciation, and Histology in Multiple Fish Species From Caddo Lake, a Fresh Water Wetland
This work explores the metabolism of mercury in liver and spleen tissue of fish from a methylmercury contaminated wetland. Wild-caught bass, catfish, bowfin and gar were collected. Macrophage centers, which are both reactive and primary germinal centers in various fish tissues, were hypothesized to be the cause of demethylation of methylmercury in fish tissue. Macrophage centers are differentially expressed in fish tissue based on phylogenetic lineage, and are found primarily in the livers of preteleostean fish and in the spleen of teleostean fish. Histology of liver and spleen was examined in both control and wild-caught fish for pathology, size and number of macrophage centers, and for localization of mercury. Total mercury was estimated in the muscle tissue of all fish by direct mercury analysis. Selenium and mercury concentrations were examined in the livers of wild-caught fish by liquid introduction inductively coupled plasma mass spectrometry (ICP-MS). Total mercury was localized in histologic sections by laser ablation ICP-MS (LA-ICP-MS). Mercury speciation was determined for inorganic and methylmercury in liver and spleen of fish by bas chromatography-cold vapor atomic fluorescence spectroscopy (GC-CVAFS). Macrophage center tissue distribution was found to be consistent with the literature, with a predominance of centers in preteleostean liver and in spleens of teleostean fish. Little evidence histopathology was found in the livers or spleens of fish examined, but differences in morphology of macrophage centers and liver tissue across species are noted. the sole sign of liver pathology noted was increased hepatic hemosiderosis in fish with high proportions of liver inorganic mercury. Inorganic mercury was found to predominate in the livers of all fish but bass. Organic mercury was found to predominate in the spleens of all fish. Mercury was found to accumulate in macrophage centers, but concentrations of mercury in this compartment were found to vary less in relation …
Ecological Significance and Underlying Mechanisms of Body Size Differentiation in White-tailed Deer
Body size varies according to nutritional availability, which is of ecological and evolutionary relevance. The purpose of this study is to test the hypothesis that differences in adult body size are realized by increasing juvenile growth rate for white-tailed deer (Odocoileus virginianus). Harvest records are used to construct growth rate estimates by empirical nonlinear curve fitting. Results are compared to those of previous models that include additional parameters. The rate of growth increases during the study period. Models that estimate multiple parameters may not work with harvest data in which estimates of these parameters are prone to error, which renders estimates from complex models too variable to detect inter-annual changes in growth rate that this simpler model captures
Effects of Layer Double Hydroxide Nanoclays on the Toxicity of Copper to Daphnia Magna
Nanoparticles may affect secondary pollutants such as copper. Layer Double Hydroxides (LDH) are synthetically produced nanoparticles that adsorb copper via cation exchange. Pretreatment of copper test solutions with LDH nanoparticles followed by filtration removal of LDH nanoparticles demonstrated the smallest LDH aggregates removed the most copper toxicity. This was due to increased surface area for cation exchange relative to larger particle aggregates. Co-exposure tests of copper chloride and clay were run to determine if smaller clay particles increased copper uptake by D. magna. Coexposure treatments had lower LC50 values compared to the filtration tests, likely as a result of additive toxicity. LDH nanoclays do reduce copper toxicity in Daphnia magna and may serve as a remediation tool.
Integrating Selective Herbicide and Native Plant Restoration to Control Alternanthera philoxeroides (Alligator Weed)
Exotic invasive aquatic weeds such as alligator weed (Alternanthera philoxeroides) threaten native ecosystems by interfering with native plant communities, disrupting hydrology, and diminishing water quality. Development of new tools to combat invaders is important for the well being of these sensitive areas. Integrated pest management offers managers an approach that combines multiple control methods for better control than any one method used exclusively. In a greenhouse and field study, we tested the effects of selective herbicide application frequency, native competitor plant introduction, and their integration on alligator weed. In the greenhouse study, alligator weed shoot, root, and total biomass were reduced with one herbicide application, and further reduced with two. Alligator weed cumulative stem length and shoot/root ratio was only reduced after two applications. In the greenhouse, introduction of competitors did not affect alligator weed biomass, but did affect shoot/root ratio. The interaction of competitor introduction and herbicide did not significantly influence alligator weed growth in the greenhouse study. In the field, alligator weed cover was reduced after one herbicide application, but not significantly more after a second. Introduction of competitor species had no effect on alligator weed cover, nor did the interaction of competitor species and herbicide application. This study demonstrates that triclopyr amine herbicide can reduce alligator weed biomass and cover, and that two applications are more effective than one. To integrate selective herbicides and native plant introduction successfully for alligator weed control, more research is needed on the influence competition can potentially have on alligator weed growth, and the timing of herbicide application and subsequent introduction of plants.
A Characterization Of Jackson Blue Spring, Jackson County, Florida
Jackson Blue is a first magnitude spring in the karst terrane of northeast Florida. Previous studies have identified inorganic fertilizer as the source of high nitrate levels in the spring. Agricultural land use and karst vulnerability make Jackson Blue a good model for conservation concerns. This work offers an aggregation of studies relating to the springshed, providing a valuable tool for planning and conservation efforts in the region. An analysis of nitrate levels and other water quality parameters within the springshed did not reveal significantly different values between agricultural and forested land use areas. Confounding factors include: high transmissivity in the aquifer, interspersed land use parcels, and fertilizer application in forested areas due to commercial pine stand activity.
Ultraviolet Radiation Tolerance in High Elevation Copepods from the Rocky Mountains of Colorado, USA
Copepods in high elevation lakes and ponds in Colorado are exposed to significant levels of ultraviolet radiation (UV), necessitating development of UV avoidance behavior and photoprotective physiological adaptations. The copepods are brightly pigmented due to accumulation of astaxanthin, a carotenoid which has photoprotective and antioxidant properties. Astaxanthin interacts with a crustacyanin-like protein, shifting its absorbance from 473 nm (hydrophobic free form, appears red) to 632 nm (protein-bound complex, appears blue). In six sites in Colorado, habitat-specific coloration patterns related to carotenoprotein complex have been observed. The objective of this study was to determine whether pigment accumulation or carotenoprotein expression has a greater effect on resistance to UV exposure. For each site, copepod tolerance to UV was assessed by survivorship during UV exposure trials. Average UV exposure was determined for each habitat. Astaxanthin profiles were generated for copepods in each site. Ability to withstand UV exposure during exposure trials was significantly different between color morphs (p < 0.0001). Red copepods were found to tolerate 2-fold greater levels of UVB than blue or mixed copepods. Additionally, red copepods have much higher levels of total astaxanthin than blue or mixed copepods (p < 0.0001) and receive a higher daily UV dose (p < 0.0003). Diaptomid carotenoprotein sequence is not homologous with that of other crustaceans in which crustacyanin has been characterized which prevented quantification of carotenoprotein transcript expression. Overall, diaptomid color morph may be an important indicator of UV conditions in high elevation lentic ecosystems.
Measuring Atmospheric Ozone and Nitrogen Dioxide Concentration by Differential Optical Absorption Spectroscopy
The main objective was to develop a procedure based on differential optical absorption spectroscopy (DOAS) to measure atmospheric total column of ozone, using the automated instrument developed at the University of North Texas (UNT) by Nebgen in 2006. This project also explored the ability of this instrument to provide measurements of atmospheric total column nitrogen dioxide. The instrument is located on top of UNT’s Environmental Education, Science and Technology Building. It employs a low cost spectrometer coupled with fiber optics, which are aimed at the sun to collect solar radiation. Measurements taken throughout the day with this instrument exhibited a large variability. The DOAS procedure derives total column ozone from the analysis of daily DOAS Langley plots. This plot relates the measured differential column to the airmass factor. The use of such plots is conditioned by the time the concentration of ozone remains constant. Observations of ozone are typically conducted throughout the day. Observations of total column ozone were conducted for 5 months. Values were derived from both DOAS and Nebgen’s procedure and compared to satellite data. Although differences observed from both procedures to satellite data were similar, the variability found in measurements was reduced from 70 Dobson units, with Nebgen’s procedure, to 4 Dobson units, with the DOAS procedure.A methodology to measure atmospheric nitrogen dioxide using DOAS was also investigated. Although a similar approach to ozone measurements could be applied, it was found that such measurements were limited by the amount of solar radiation collected by the instrument. Observations of nitrogen dioxide are typically conducted near sunrise or sunset, when solar radiation experiences most of the atmospheric absorption.
Effect of Rancher’s Management Philosophy, Grazing Practices, and Personal Characteristics on Sustainability Indices for North Central Texas Rangeland
To assess sustainability of privately owned rangeland, a questionnaire was used to gathered data from ranches in Cooke, Montague, Clay, Wise, Parker, and Jack counties in North Central Texas. Information evaluated included: management philosophy, economics, grazing practices, environmental condition, quality of life, and demographics. Sustainability indices were created based on economic and land health indicator variables meeting a minimum Cronbach‘s alpha coefficient (α = 0.7). Hierarchical regression analysis was used to create models explaining variance in respondents’ indices scores. Five predictors explained 36% of the variance in rangeland economic sustainability index when respondents: 1) recognized management inaction has opportunity costs affecting economic viability; 2) considered forbs a valuable source of forage for wildlife or livestock; 3) believed governmental assistance with brush control was beneficial; 4) were not absentee landowners and did not live in an urban area in Texas, and; 5) valued profit, productivity, tax issues, family issues, neighbor issues or weather issues above that of land health. Additionally, a model identified 5 predictors which explained 30% of the variance for respondents with index scores aligning with greater land health sustainability. Predictors indicated: 1) fencing cost was not an obstacle for increasing livestock distribution; 2) land rest was a component of grazing plans; 3) the Natural Resource Conservation Service was used for management information; 4) fewer acres were covered by dense brush or woodlands, and; 5) management decisions were not influenced by friends. Finally, attempts to create an index and regression analysis explaining social sustainability was abandoned, due to the likely-hood of type one errors. These findings provide a new line of evidence in assessing rangeland sustainability, supporting scientific literature concerning rangeland sustainability based on ranch level indicators. Compared to measuring parameters on small plots, the use of indices allows for studying replicated whole- ranch units using rancher insight. Use …
Spatial Variations and Cultural Explanations to Obesity in Ghana
While obesity is now recognized as a major health concern in Ghana, the major drivers, causal factors, and their spatial variation remain unclear. Nutritional changes and lack of physical activity are frequently blamed but the underlying factors, particularly cultural values and practices, remain understudied. Using hot spot analysis and spatial autocorrelation, this research investigates the spatial patterns of obesity in Ghana and the explanatory factors. We also use focus group discussions to examine the primary cultural factors underlying these patterns. The results show that wealth, high education, and urban residence are the best positive predictors of obesity, while poverty, low education, and rural residence are the best (negative) predictors of obesity. Consequently, improving the socioeconomic status, for example, through higher levels of education and urbanization may increase obesity rates. Furthermore, the cultural preference for fat body as the ideal body size drives individual aspiration for weight gain which can lead to obesity. Thus, reducing obesity rates in Ghana is impossible without addressing the underlying cultural values.
Optimizing Scientific and Social Attributes of Pharmaceutical Take Back Programs to Improve Public and Environmental Health
Research continues to show that pharmaceutical environmental contamination has caused adverse environmental effects, with one of the most studied effects being feminization of fish exposed to pharmaceutical endocrine disruptors. Additionally, there are also public health risks associated with pharmaceuticals because in-home reserves of medications provide opportunities for accidental poisoning and intentional medication abuse. Pharmaceutical take back programs have been seen as a remedy to these concerns; however a thorough review of peer-reviewed literature and publicly available information on these programs indicates limited research has been conducted to validate these programs as a purported solution. Furthermore, there are significant data gaps on key factors relating to take back program participants. The purpose of this dissertation was therefore to address these gaps in knowledge and ultimately determine if take back programs could actually improve public and environmental health. This was accomplished by conducting social and scientific research on a take back program called Denton Drug Disposal Day (D4). Socioeconomic, demographic, and geographic characteristics of D4 participants were investigated using surveys and geographic analysis. Impacts on public health were determined by comparing medications collected at D4 events with medications reported to the North Texas Poison Center as causing adverse drug exposures in Denton County. Impacts to environmental health were determined by monitoring hydrocodone concentrations in wastewater effluent released from Denton’s wastewater treatment plant before and after D4 events. Data collected and analyzed from the D4 events and the wastewater monitoring suggests D4 events were successful in contributing to improvements in public and environmental health; however there was insufficient evidence to prove that D4 events were exclusively responsible for these improvements. An additional interesting finding was that willingness to travel to participate in D4 events was limited to a five to six mile threshold. This geographic information, combined with other findings related to socioeconomic, …
Modeling the Relationship Between Golden Algae Blooms in Lake Texoma, Usa, Versus Nearby Land Use and Other Physical Variables
Pyrmnesium parvum, commonly known as golden algae, is an algal species that under certain circumstances releases toxins which can lead to fish kills and the death of other economically and ecologically important organisms. One of the major objectives of the study was to investigate whether a relationship exists between land use and Prymnesium parvum abundance in littoral sites of Lake Texoma, USA. Another objective was to investigate whether a relationship exists between other physical variables and counts of P. parvum. Lastly, developing a valid model that predicts P. parvum abundance was an objective of the study. Through stepwise regression, a small but highly significant amount of the variation in P. parvum counts was found to be explained by wetlands, soil erodibility and lake elevation. The developed model provides insight for potential golden algae management plans, such as maintaining wetlands and teaching land owners the relationship between soil erosivity and golden algae blooms.
Reproductive and Growth Responses of the Fathead Minnow (Pimephales Promelas) and Japanese Medaka (Oryzias Latipes) to the Synthetic Progestin, Norethindrone
A commonly prescribed contraceptive, the synthetic progestin norethindrone (NET) inhibits ovulation in humans. However, ecotoxicological data are lacking. Preliminary tests produced an LC50 for NET of > 1.0 mg/L (96-hour, fathead minnow (FHM) and medaka) and a NOEC of 242.0 µg/L, a LOEC of 485.0 µg/L (7-day, growth for FHM and medaka). Reproductive testing revealed a LOEC for fecundity of 24.1 ng/L (21 days, medaka). Further testing confirmed the LOEC of 24.1 ng/L while defining a NOEC of 4.7 ng/L (28 days, medaka). Effect of NET in medaka life-cycle exposure at concentrations exceeding 4.7 ng/L was evident. Few females were present in the 24.7 ng/L exposure concentration, with none in the 104.6 ng/L. Egg production was significantly reduced at concentrations exceeding 4.7 ng/L. Additionally, weight, condition factor and somatic indices were significantly different in males exposed to concentrations exceeding 4.7 ng/L. For fecundity and sexual differentiation; the NOEC was 4.7 ng/L, the LOEC 24.6 ng/L; growth and somatic indices, the NOEC was more appropriately 0.9 ng/L, with effect evident at 4.7 ng/L. Sexual differentiation of the F1 population was similar to the F0. A defining result of this test was development of exceptionally large ovaries in NET- exposed female medaka, perhaps indicative of a threshold limit for exposure in these fish. Results of FHM life-cycle testing were similar, establishing a NOEC for fecundity of 0.9 ng/L, a LOEC of 4.8 ng/L. NET's inhibitory effect on gonadal development was obvious; GSI NOEC for males, 4.8 ng/L, and histological examination confirmed the presence of intersex development at elevated concentrations. Normal physical development and growth were impaired, generally at concentrations exceeding 24.1 ng/L. At exposure concentrations exceeding 4.8 ng/L, external sexual confirmation of fish was difficult; LOEC for finspot development in females, 4.8 ng/L. Sexual determination of the 97.1 ng/L exposure group was …
Characterization of Triclocarban, Methyl- Triclosan, and Triclosan in Water, Sediment, and Corbicula Fluminea (Müller, 1774) Using Laboratory, in Situ, and Field Assessments
In the last decade emerging contaminants research has intensified in a bid to answer questions about fate, transport, and effects as these chemicals as they get released into the environment. The chemicals of interest were the antimicrobials; triclocarban (TCC) and triclosan (TCS), and a metabolite of triclosan, methyl triclosan (MTCS). This research was designed to answer the question: what is the fate of these chemicals once they are released from the waste water treatment plant into receiving streams. Three different assessment methods; field monitoring, in-situ experiments, and laboratory studies were used to answer the overall question. TCS, TCC, and MTCS levels were measured in surface water, sediment and the Asiatic clam Corbicula fluminea. Field studies were conducted using four sites at Pecan Creek, Denton TX. Levels of all three chemicals in clams were up to fives orders of magnitude the water concentrations but an order of magnitude lower than in sediment. Highest sediment levels of chemicals were measured in samples from the mouth of Pecan Creek (highest organic matter). TCC was the most and TCS was the least accumulated chemicals. In-situ and lab studies both indicated that uptake of these chemicals into the clams was very rapid and measurable within 24hours of exposure. The after clams were transferred into clean water most of the compounds were depurated within 14 days.
Modeling of Land Use Change Effects on Storm Water Quantity and Quality in the City of Carrollton and the North Texas Area
Development and population are rapidly increasing in urbanizing areas of North Texas and so is the need to understand changes in storm water runoff flow and its contamination by nutrients, sediment, pesticides and other toxicants. This study contributes to this understanding and has two primary components: first, development of a graphical user interface for a geographic information system and storm water management database, and second, performing a two-scale hydrological modeling approach (the US Corp of Engineers HEC-HMS model and the US Environmental Protection Agency SWMM model). Both primary components are used together as a toolkit to support the storm water management program of the City of Carrollton, located in North Texas. By focusing limited city resources, the toolkit helps storm water managers in the process of compliance with federal regulations, especially the National Pollution Discharge Elimination System permit, and provides guidance for reporting, planning and investigation. A planning example was conducted by modeling potential changes in storm water quality due to projections of land use based on the City of Carrollton's Comprehensive Plan. An additional component of this study is the evaluation of future changes in surface water quantity and quality in the North Central Texas area, specifically in a rural but rapidly urbanizing subbasin area of the greater Lake Lewisville watershed. This was accomplished using the US Corp of Engineers HEC-HMS hydrological model. Precipitation scenarios were derived from years of historically high, medium, and low annual precipitation. Development scenarios were derived from current land use in the Lake Lewisville sub basin, current land use in the city of Carrollton, and from Markov projections based on recent land use change calculated from satellite images of 1988 and 1999. This information is useful for future land use planning and management of water resources in North Texas.
Laboratory and field studies of cadmium effects on Hyalella azteca in effluent dominated systems.
Laboratory single-species toxicity tests are used to assess the effects of contaminants on aquatic biota. Questions remain as to how accurately these controlled toxicity tests predict sitespecific bioavailability and effects of metals. Concurrent 42-day Hyalella azteca exposures were performed with cadmium and final treated municipal effluent in the laboratory and at the University of North Texas Stream Research Facility. Further laboratory testing in reconstituted hard water was also conducted. Endpoints evaluated include survival, growth, reproduction, and Cd body burden. My results demonstrate that laboratory toxicity tests may overestimate toxicity responses to cadmium when compared to effluent dominated stream exposures. Discrepancies between endpoints in the three tests likely resulted from increased food sources and decreased cadmium bioavailability in stream mesocosms
Comparative Bioavailability of Dietary and Dissolved Cadmium to Freshwater Aquatic Snails
Heavy metal bioaccumulation in aquatic organisms may occur through direct or indirect uptake routes. Research indicates that the significance of uptake route varies with contaminant and organism exposed. The relative importance of different metal sources in aquatic systems was investigated by exposing freshwater snails to dietary or dissolved sources of cadmium. Snails were exposed to control, contaminated food only, contaminated water only, and contaminated food and water treatments. During the 15-day exposure, samples were taken to determine Cd concentration in snail soft tissue, snail shell, algal food, and overlying water. Analyses of snail soft tissue and shells indicate that exposure route significantly affects Cd concentrations in the tissues. In both cases, dissolved Cd is the primary contributor to metal body burden.
Storm Water System Monitoring for the Small Municipality Under Phase II of the National Pollutant Discharge Elimination System
Storm water quality can have a significant impact on receiving water bodies. The chief recipients of these impacts are aquatic life in the receiving water body and downstream water users. Over the last few decades, legislation, regulations, institutions and facilities have evolved to recognize the impact of urban storm water on receiving streams. This increased emphasis has caused contaminants in storm water to be identified as a major concern. This developing concern has generated an increased interest in the water quality of our streams and lakes and emphasized the need for more monitoring efforts. With the passage of the National Pollutant Discharge Elimination System (NPDES) Phase II requirements, small municipalities are responsible for storm water impacts on receiving waters within their jurisdiction. For the purposes of NPDES Phase II requirements, small municipalities are identified as these municipalities that are typically composed of 10,000 but less than 100,000 in population. The purpose of this dissertation is to develop a manual for use by the staff of small municipalities in meeting the requirements prescribed by changes initiated in the NPDES Phase II regulations. Attempts were made to comply with these requirements within a very limited manpower and budget framework and to develop procedures that would allow for permit compliance using testing equipment that was both reliable and robust. The users' manual provides valuable guidance in the establishment of a knowledge base for characterization of the watersheds selected for study. Chapter 3 of the dissertation contains a users' manual, designed for use by municipal staff members in their efforts to comply with the NPDES Phase II requirements. Using the techniques and equipment capabilities developed during the writing of the users' manual a characterization of three watersheds within Denton County, Texas was developed. Non-storm water samples were taken from each of the streams and …
A geospatial tool for assessing potential wildland fire risk in central Texas.
Wildland fires in the United States are not always confined to wilderness areas. The growth of population centers and housing developments in wilderness areas has blurred the boundaries between rural and urban. This merger of human development and natural landscape is known in the wildland fire community as the wildland urban interface or WUI, and it is within this interface that many wildland fires increasingly occur. As wildland fire intrusions in the WUI increase so too does the need for tools to assess potential impact to valuable assets contained within the interface. This study presents a methodology that combines real-time weather data, a wildland fire behavior model, satellite remote sensing and geospatial data in a geographic information system to assess potential risk to human developments and natural resources within the Austin metropolitan area and surrounding ten counties of central, Texas. The methodology uses readily available digital databases and satellite images within Texas, in combination with an industry standard fire behavior model to assist emergency and natural resource managers assess potential impacts from wildland fire. Results of the study will promote prevention of WUI fire disasters, facilitate watershed and habitat protection, and help direct efforts in post wildland fire mitigation and restoration.
Effects on Survival, Reproduction and Growth of Ceriodaphnia dubia following Single Episodic Exposure to Copper or Cadmium
Effects of episodic exposures have gained attention as the regulatory focus of the Clean Water Act has shifted away from continuous-flow effluents. Standardized laboratory toxicity tests require that exposure be held constant. However, this approach may not accurately predict organism responses in the field following episodic exposures such as those associated with rain-driven runoff events or accidental pollutant discharge. Using a modified version of the 7-day short-term chronic test recommended by the US Environmental Protection Agency, Ceriodaphnia dubia were exposed to copper or cadmium for durations ranging from 1 minute to 24 hours. In addition, adult reproductive recovery and effects on second generation individuals was assessed following select copper exposures. Finally, cadmium exposures were compared in reconstituted hard water (RHW) and municipal treated wastewater effluent (TWE). Following exposure, organisms were transferred to clean RHW or TWE and maintained for the remainder of the test. No- and lowest observed effect concentrations (NO- and LOECs) increased logarithmically with respect to logarithmic decreases in duration regardless of metal, endpoint or water type. Effective concentrations of cadmium however, were usually higher than those of copper, especially in TWE. LOECs for C. dubia survival following 24-hour and 5-minute exposures to copper were 116 and 417 µg/L, respectively. LOECs for fecundity were 58 and 374 µg/L, respectively. Neonate production of first generation adult C. dubia appeared to recover from pulsed copper exposure upon examination of individual broods. Cumulative mean neonate production however, showed almost no signs of recovery at exposure durations ≥3 hours. Pulse exposure to copper also resulted in diminished fecundity of unexposed second generation individuals. Such effects were pronounced following parental exposure for 24 hours but lacking after parental exposures ≤3 hours. LOECs for C. dubia survival following 24-hour and 5-minute exposures to cadmium in RHW were 44 and 9000 µg/L, respectively. LOECs for …
Rainfall-runoff changes due to urbanization: a comparison of different spatial resolutions for lumped surface water hydrology models using HEC-HMS.
Hydrologic models were used to examine the effects of land cover change on the flow regime of a watershed located in North-Central Texas. Additionally, the effect of spatial resolution was examined by conducting the simulations using sub-watersheds of different sizes to account for the watershed. Using the Army Corps of Engineers, Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS), two different modeling methods were evaluated at the different sub-watershed resolutions for four rainfall events. Calibration results indicate using the smaller spatial resolutions improves the model results. Different scenarios for land cover change were evaluated for all resolutions using both models. As land cover change increased, the amount of flow from the watershed increased.
Analysis of the One-Horned Rhinoceros (Rhinoceros Unicornis) Habitat in the Royal Chitwan National Park, Nepal.
This study analyzes the remaining suitable habitat of the one-horned rhinoceros, Rhinoceros unicornis, in Royal Chitwan National Park of Nepal. An April 2003 Landsat image was classified into eight land cover types: wetland, sand, water, mixed forest, sal forest, agriculture, settlement, and grassland. This image was converted into habitat suitability maps using cover, food, and water. The rhinoceros prefers grassland habitat with oxbow lakes and closed canopy during the monsoon season. Nominal values of five parameters were used to create a map of habitat suitability index. The map was categorized into four habitat classes: highly unsuitable, unsuitable, moderately suitable habitat, and suitable. Landscape metrics, patch metrics and class metrics associated with habitat were determined through the use of FRAGSTATS.
Assessing Outcomes of a Recycling Education and Service Program within an Elementary School
During the spring 2004 a pilot school recycling program was implemented within Robert E. Lee Elementary. The primary goal of the program was to determine how recycling education in the school would affect curbside recycling rates within the surrounding community. The program was a cooperative effort between the University of North Texas, City of Denton Solid Waste Department and Keep Denton Beautiful. Throughout the first months of the study during the spring 2004, an increase in curbside recycling within the Robert E. Lee Elementary attendance zone was observed, with a dramatic decrease in participation over the summer and a rapid increase once again during the second full semester of the study. In a survey conducted with 3rd and 5th grade students at the pilot project school, most students expressed positive attitudes about recycling. Students whose survey responses indicated a high level of knowledge about what could be recycled were 37% more likely to claim to recycle regularly, than those students that scored low on the knowledge portion of the survey. Although the total amount of waste generation (recyclable and non-recyclable) at Robert E. Lee Elementary did not decrease during the study, the campus was able to divert recyclable material from their trash at a much higher rate than two other local elementary campuses with paper-only recycling and no associated recycling education program. Based upon the success of the recycling program at Robert E. Lee Elementary, the City of Denton Recycling Division has agreed to move forward with offering recycling to more schools within the Denton Independent School District during the 2005-2006 school year.
Determination of Habitat Preferences of Pronghorn (Antilocapra americana) on the Rolling Plains of Texas Using GIS and Remote Sensing
The Rocker b Ranch on the southern Rolling Plains has one of the last sizeable populations of pronghorn (Antilocapra americana) in Texas. To investigate habitat utilization on the ranch, pronghorn were fitted with GPS/VHF collars and were released into pastures surrounded by a variety of fences to determine how fence types affected habitat selection. Habitat parameters chosen for analysis were vegetation, elevation, slope, aspect, and distances to water, roads, and oil wells. Results showed that pronghorn on the ranch crossed modified fencing significantly less than other types of fencing. Pronghorn selected for all habitat parameters to various degrees, with the most important being vegetation type. Habitat selection could be attributed to correspondence of vegetation type with other parameters or spatial arrangements of physical features of the landscape. Seasonal differences in habitat utilization were evident, and animals tended to move shorter distances at night than they did during daylight hours.
Simulation of physical and chemical processes in reservoirs: Two case studies.
Managing water quality aspects requires the use of integrative tools that allow a holistic approach to this problem. Water quality models coupled to hydrodynamic models are these tools. This study presents the application of the water quality model WASP coupled to the hydrodynamic model DYNHYD for two distinct reservoirs: Lake Texoma and Tocoma Reservoir. Modeling the former included simulations of water velocities, water level, and four chemical and physical compounds: chlorides, dissolved oxygen (DO), biochemical oxygen demand (BOD), and total suspended solids (TSS); and validation of the results by comparing with observed values during March - May, 1997. The latter is still under project status and the simulation was performed in a prospective way. The analysis included simulations of water velocities under current and for expected conditions, DO and BOD. Both models, DYNHYD and WASP, fitted pretty well to observed conditions for Lake Texoma and for where Tocoma Reservoir has been planned. Considering management and decision support purposes, the role of boundary and loading conditions also was tested. For Lake Texoma, controlling boundary conditions for chlorides is a determinant factor for water quality of the system. However, DO and TSS in the reservoir are governed by additional process besides the condition of the boundary. Estimated loadings for this system did not provided significant effects, even though the allocation of a load for chlorides resulted in significant changes in the trend for expected chloride concentrations at the Washita River Arm of Lake Texoma. For Tocoma Reservoir, the expected concentration of DO all over the reservoir is going to driven by boundary conditions, as well as by the management of autochthonous BOD loadings provided by vegetation decomposition. These two factors will be determinant for the resulting water quality of the future reservoir.
Macroinvertebrate Colonization and Assemblages Associated with Aquatic Macrophytes in a Newly Created Urban Floodway Ecosystem, Dallas, Tx
A study of macroinvertebrate colonization and assemblages, including secondary productivity of the familiar bluet damselfly or Enallagma civile Hagen (Odonata: Coenagrionidae), associated with the aquatic macrophytes Heteranthera dubia (Jacq.) MacMill. (water stargrass) and Potamogeton nodosus Poir. (American pondweed) was conducted at the Dallas Floodway Extension Trinity River Project (DFE) Lower Chain of Wetlands (LCOW), Dallas, TX, from September 2010 through November 2011. Macroinvertebrate abundance, taxa richness, Simpson's index of diversity, and Simpson's evenness from the two macrophytes and from three different wetland cells of varying construction completion dates, water sources, and native aquatic vegetation establishment were analyzed along with basic water quality metrics (temperature °C, pH, dissolved oxygen mg/L, and conductivity µs/cm). E. civile nymphs were separated into five developmental classes for secondary productivity estimations between macrophytes and wetland cell types. Mean annual secondary productivity in the DFE LCOW among two macrophytes of E. civile was 1392.90 ash-free dry weight mg/m²/yr, standing stock biomass was 136.77 AFDW mg/m2/yr, cohort production / biomass (P/B) ratio was calculated to be 4.30 / yr and the annual production / biomass (P/B) ratio was 10.18 /yr.
Space Use, Microhabitat and Macrohabitat Use of the Three-Toed Box Turtle (Terrapene carolina) in North Texas
Box turtle (Terrapene carolina) populations are steadily declining due their unique natural history, effects of climate change, and anthropogenic land use change. There is a need for updated information on box turtle space and micro and macro-habitat use to inform conservation efforts. This study used VHF radiotelemetry and GPS data loggers to examine box turtle space and habitat use in North Texas. Box turtle home range sizes averaged 6.6ha (range = 0.79 - 18.08, n = 23), and males (n = 9) had larger home ranges than females (n = 14; W = 31.5, P = 0.05). Home range size was best explained by a combination of variables including sex and body size, but overall, home ranges that consisted of higher percentages of suitable box turtle habitat were smaller. Box turtles used deciduous forest more than expected and wetlands less than expected by chance (Fisher's exact test, P < 0.0001). The most informative variable for box turtle macrohabitat selection was NDVI. Box turtles selected microhabitats with a higher percent litter (t = -2.16, P < 0.05) and understory cover (t = -5.03, P < 0.05). The results of CART analysis showed the nested importance of macro- and microhabitat and identified NDVI as the most important variable for predicting suitable box turtle habitat. Given these results, we postulate that NDVI can be used to identify suitable box turtle habitat at landscape scales to aid in management and conservation efforts. We found that three-toed box turtles are using habitat differently than what has been reported in eastern box turtles, providing support for the theory that three-toed box turtles should be classified as a separate species.
Investigating the Spatial Relationship between Suicide and Race/Ethnicity: The Case for Alternate Rate Adjustment Techniques in Medical Geography
This work explores potential distortions created by race and ethnicity on the visualization, interpretation, and understanding of the spatial distribution of suicide in the United States. Due to radically different suicide rates among racial/ethnic groups, traditional crude or age-adjusted rates may introduce statistical confounding in both linear and spatial models. Using correlation, choropleth mapping, hot spot analysis, and location-allocation modeling, this work shows how traditional methods of health system planning may unintentionally overlook elevated risk in minority-dominated areas like inner cities, the Texas/Mexico border region, and the Deep South. The final chapter introduces a simulation protocol for examining potential distortions in datasets to identify spatial and non-spatial distortions created by the underlying population composition. Methodologically, this dissertation contributes to the discourse on place context versus population composition. More generally, this research points to potential hazards to creating a more inclusive and equitable healthcare system.
Conducting Tick-Borne Disease Research in Texas with a Focus on Rickettsia spp.
The field of vector-borne disease research uses multidisciplinary approaches to help understand complicated interactions. This dissertation, covers three different aspects of tick-borne disease research which all focus on exploring tick-borne diseases in the non-endemic areas of Denton, County Texas and the state of Texas with a focus on Rickettsia spp. These aspects include tick sampling, testing ticks for the presence of Rickettsia spp., and creating species distribution maps of the Rickettsia spp. Rickettsia amblyommatis and tick species Amblyomma americanum.
The Effects of Leadership Development on Student Retention in STEM
The Science Teaching and Research (STAR) Leadership Program at Austin College was designed to intentionally include leadership development into the science curriculum and provides an opportunity to determine the effects of student leadership development on the retention of students in science, technology, engineering, and mathematics (STEM). This dissertation used a quasi-experimental design to determine: 1) if STEM retention can be explained though the inclusion of leadership development into the curriculum; 2) if there is a difference between Austin College students who choose a STEM major compared to students who do not; and 3) if there is a difference between Austin College students who complete a STEM degree compared to students who do not. Census data were collected on 2,137 students who enrolled in STEM courses beginning in the fall of 2008 through the spring of 2017, and factors affecting retention were compared across three 3-year time periods that spanned before the program was initiated through wider implementation. A logistic regression showed that there was no significant positive association between leadership development and STEM retention when taking into account other pre-college and demographic factors that have been linked to retention in the literature. However, a one-way ANOVA showed that the academic factors significantly decreased as the STAR program progressed. Further studies are required to understand student benefits associated with the current program.
Exploration of Explanatory Variables in the Creation of Linear Regression Models and Logistic Regression Models to Predict the Performance of Preservice Teachers on the Science Portion of the EC-6 TExES Certification Examination
The purpose of this study was to analyze the current and pre-service conditions that can affect student teachers' preparedness to pass the science portion of the EC-6 Texas Examinations for Educator Standards (TExES), one of the mandatory certification exam to become a teacher in Texas. Two types of prediction models were employed in this study: binomial logistic regression and multiple linear regression. The independent variables used in this study were: final grade in BIOL 1082, classification of students, transfer status, taken college biology, taken college chemistry, taken college physics, taken college environmental science, taken college earth science, attending college part-time, number of credits taken during the semester, first-generation college student, relatives with degree in education, and current GPA. The dependent variable of this study was the posttest score on science portion of the EC-6 TExES practice exam. A total of 170 preservice teachers participated this study. This study used students enrolled in BIOL 1082, who volunteered to take a Biology for Educators QualtricsTM survey and the EC-6 TExES practice exam in a pretest (start of semester) and posttest (end of semester) form. The findings of this study revealed that the single best predictor of preservice teachers' performance on the science portion of EC-6 TExES practice certification examination was the Grade in BIOL 1082.
Correlation of Watershed NDVI Values to Benthic Macroinvertebrate Biodiversity in Eight North American Wadeable Streams
Water quality of a stream or river is influenced by the surrounding landscape and vegetation. The Normalized Difference Vegetation Index (NDVI) is commonly used to characterize landcover and vegetation density. Benthic macroinvertebrates are ubiquitous in freshwater streams and are excellent indicators of the quality of freshwater habitats. Data from one NDVI remote sensing flight and one macroinvertebrate sampling event for eight wadeable stream study sites in the National Ecological Observatory Network (NEON) were acquired. Proportions of high, moderate, and sparse vegetation were calculated for each stream watershed using ArcGIS. Functional feeding groups and tolerance values were assigned to macroinvertebrate taxa. The Fourth-corner and RLQ methods of analysis, available in the ade4 package for R software, were used to evaluate the relationships of macroinvertebrate traits with environmental variables. Hypothesis testing using Model 6 in the ade4 package resulted in p-values of 0.066 and 0.057 for global (overall) significance. Mean NDVI values of moderately vegetated areas and proportion of sparse vegetation were found to be significant to percent shredders at alpha ≤ 0.05. Results of these methods of analysis, when combined with traditional macroinvertebrate sampling metrics, show that NDVI can be a useful, additional tool to characterize a watershed and its effects on macroinvertebrate community composition and structure.
Metacommunity Dynamics of Medium- and Large-Bodied Mammals in the LBJ National Grasslands
Using metacommunity theory, I investigated the mechanisms of meta-assemblage structure and assembly among medium- to large-bodied mammals in North Texas. Mammals were surveyed with camera-traps in thirty property units of the LBJ National Grasslands (LBJNG). In Chapter II the dispersal and environmental-control based processes in community assembly were quantified within a metacommunity context and the best-fit metacommunity structure identified. A hypothesis-driven modelling approach was used in Chapter III to determine if the patterns of species composition and site use could be explained by island biogeography theory (IBT) or the habitat amount hypothesis (HAH). Islands were defined as the LBJNG property unit or the forest patch bounded by the property unit. Forest cover was selected as the focal habitat for the HAH. Seasonal dynamics were explored in both chapters. Metacommunity structure changed with each season, resulting in quasi-nested and both quasi and idealized Gleasonian and Clementsian structures. Results indicated that the anthropogenic development is, overall, not disadvantageous for this assemblage, that community assembly receives equal contributions from spatial and environmental factors, and that the metacommunity appears to operate under the mass effects paradigm. The patterns of species composition and site use were not explained by either IBT or HAH. Likely because this assemblage of generalist, dispersal-capable mammals are utilizing multiple habitat types both in the protected land and in the private land. This research highlights the versatility of these species and the potential value of rural countryside landscapes for wildlife conservation.
Acute Toxicity of Crude Oil Exposures to Early Life Stage Teleosts: Contribution of Impaired Renal Function and Select Environmental Factors
Oil spills are well-known adverse anthropogenic events, as they can induce severe impacts on the environment and negative economic consequences. Still, much remains to be learned regarding the effects of crude oil exposure to aquatic organisms. The objectives of this dissertation were to fill some of those knowledge gaps by examining the effects of Deepwater Horizon (DWH) crude oil exposure on teleost kidney development and function. To this end, I analyzed how these effects translate into potential osmoregulatory impairments and investigated the interactive effects of ubiquitous natural factors, such as dissolved organic carbon (DOC) and ultraviolet (UV) light, on acute crude oil toxicity. Results demonstrated that acute early life stage (ELS) crude oil exposure induces developmental defects to the primordial kidney in teleost fish (i.e., the pronephros) as evident by alterations in: (1) transcriptional responses of key genes involved in pronephros development and function and (2) alterations in pronephros morphology. Crude oil-exposed zebrafish (Danio rerio) larvae presented defective pronephric function characterized by reduced renal clearance capacity and altered filtration selectivity, factors that likely contributed to the formation of edema. Latent osmoregulatory implications of crude oil exposure during ELS were observed in red drum (Sciaenops ocellatus) larvae, which manifested reduced survival in hypoosmotic waters, likely due to defective pronephros development and function. Finally, DOC-UV co-exposure slightly reduced acute crude oil photo-enhanced toxicity in red drum larvae. This dissertation provided novel information regarding crude oil toxicity that can be incorporated into environmental risk assessment and management for future oil spills.
Back to Top of Screen