Search Results

Accelerator Mass Spectrometry Studies of Highly Charged Molecular Ions
The existence of singly, doubly, and triply charged diatomic molecular ions was observed by using an Accelerator Mass Spectrometry (AMS) technique. The mean lifetimes of 3 MeV boron diatomic molecular ions were measured. No isotopic effects on the mean lifetimes of boron diatomic molecules were observed for charge state 3+. Also, the mean lifetime of SiF^3+ was measured.
Energy Losses of Protons Projected through a Plasma Due to Collisions with Electrons of the Plasma for a Variety of Non-Maxwellian Electron Velocity Distributions
The purpose of this thesis is to study energy losses suffered by protons in traversing a plasma through collision with the electrons of the plasma. For these electrons a variety of non-Maxwellian velocity distributions are assumed.
A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation
SiC has become an attractive wide bandgap semiconductor due to its unique physical and electronic properties and is widely used in high temperature, high frequency, high power and radiation resistant applications. SiC has been used as an alternative to Si in harsh environments such as in the oil industry, nuclear power systems, aeronautical, and space applications. SiC is also known for its polytypism and among them 3C-SiC, 4H-SiC and 6H-SiC are the most common polytypes used for research purposes. Among these polytypes 4H-SiC is gaining importance due to its easy commercial availability with a large bandgap of 3.26 eV at room temperature. Controlled creation of defects in materials is an approach to modify the electronic properties in a way that new functionality may result. SiC is a promising candidate for defect-induced magnetism on which spintronic devices could be developed. The defects considered are of room temperature stable vacancy types, eliminating the need for magnetic impurities, which easily diffuse at room temperature. Impurity free vacancy type defects can be created by implanting the host atoms of silicon or carbon. The implantation fluence determines the defect density, which is a critical parameter for defect induced magnetism. Therefore, we have studied the influence of low fluence low energy silicon and carbon implantation on the creation of defects in n-type 4H-SiC. The characterization of the defects in these implanted samples was performed using the techniques, RBS-channeling and Raman spectroscopy. We have also utilized these characterization techniques to analyze defects created in much deeper layers of the SiC due to implantation of high energy nitrogen ions. The experimentally determined depths of the Si damage peaks due to low energy (60 keV) Si and C ions with low fluences (< 1015 cm-2) are consistent with the SRIM-2011 simulations. From RBS-C Si sub-lattice measurements for different fluences …
Ion Beam Synthesis of Binary and Ternary Transition Metal Silicide Thin Films
Among the well-known methods to form or modify the composition and physical properties of thin films, ion implantation has shown to be a very powerful technique. In particular, ion beam syntheses of binary iron silicide have been studied by several groups. Further, the interests in transition metal silicide systems are triggered by their potential use in advanced silicon based opto-electronic devices. In addition, ternary silicides have been by far less studied than their binary counterparts despite the fact that they have interesting magnetic and electronic properties. In this study, we investigate ion beam synthesis of Fe-Si binary structures and Fe-Co-Si ternary structures. This work involves fundamental investigation into development of a scalable synthesis process involving binary and ternary transitional metal silicide thin films and Nano-structures using low energy ion beams. Binary structures were synthesized by implanting Fe- at 50 keV energy. Since ion implantation is a dynamic process, Dynamic simulation techniques were used in these studies to determine saturation fluences for ion implantation. Also, static and dynamic simulation results were compared with experimental results. The outcome of simulations and experimental results indicate, dynamic simulation codes are more suitable than static version of the TRIM to simulate high fluence, low energy and, heavy ion implantation processes. Furthermore, binary Fe-Si phase distribution was determined at different implantation fluences and annealing temperatures. A higher fluence implantation at 2.16×1017 atoms/cm2 and annealing at 500 oC showed three different Fe-Si phase formations (β-FeSi2, FeSi and Fe3Si) in substrate. Further, annealing the samples at 800 oC for 60 minutes converted the Fe3Si phase into FeSi2 and FeSi phases. As an extension, a second set of Fe- ion implantations was carried with the same parameters while the substrate was placed under an external magnetic field. External magnetic fields stimulate the formation of magnetic phase centers in the …
Gamma Rays from Neutron Excitation of Cs133
This thesis explores gamma rays from neutron excitation of Cs133.
Scaling, Power-Law First Return Times, and Non-Ergodicity
This dissertation is a collection of papers on anomalous phenomena in physics, biology, and sociology. These phenomena are primarily analyzed in terms of their temporal and spatiotemporal statistical properties. The analysis is based on both numerical simulations and, in some cases, real-world physiological and sociological data. The primary methods of analysis are diffusion entropy analysis, power spectral analysis, multifractal analysis, and survival (or waiting-time) analysis.
Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production
Comparisons between measurements of the ground-state hyperfine structure and gravitational acceleration of hydrogen and antihydrogen could provide a test of fundamental physical theories such as CPT (charge conjugation, parity, time-reversal) and gravitational symmetries. Currently, antihydrogen traps are based on Malmberg-Penning traps. The number of antiprotons in Malmberg-Penning traps with sufficiently low energy to be suitable for trappable antihydrogen production may be reduced by the electrostatic space charge of the positrons and/or collisions among antiprotons. Alternative trap designs may be needed for future antihydrogen experiments. A computational tool is developed to simulate charged particle motion in customizable magnetic fields generated by combinations of current loops and current lines. The tool is used to examine charged particle confinement in two systems consisting of dual, levitated current loops. The loops are coaxial and arranged to produce a magnetic null curve. Conditions leading to confinement in the system are quantified and confinement modes near the null curve and encircling one or both loops are identified. Furthermore, the tool is used to examine and quantify charged particle motion parallel to the null curve in the large radius limit of the dual, levitated current loops. An alternative to new trap designs is to identify the effects of the positron space in existing traps and to find modes of operation where the space charge is beneficial. Techniques are developed to apply the Boltzmann density relation along curved magnetic field lines. Equilibrium electrostatic potential profiles for a positron plasma are computed by solving Poisson's equation using a finite-difference method. Equilibria are computed in a model Penning trap with an axially varying magnetic field. Also, equilibria are computed for a positron plasma in a model of the ALPHA trap. Electric potential wells are found to form self-consistently. The technique is expanded to compute equilibria for a two-species plasma with …
Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations
Recent experimentation with excitation of surface plasmons on a gold film in the Kretschmann configuration have shown what appears to be a superconductive effect. Researchers claimed to see the existence of electron pairing during scattering as well as magnetic field repulsion while twisting the polarization of the laser. In an attempt to explain this, they pointed to a combination of electron-electron scattering in external fields as well as dynamic screening via intense laser radiation. This paper expands upon the latter, taking a look at the properties of a dynamic polarization function, its effects on bulk and surface plasmon dispersion relations, and its various consequences.
Theoretical Cross Section for Light Scattering from Superfluid Helium-4
The finite lifetime of the bound roton pair is included in the theoretical light scattering cross section to explain the shape of the peak in the observed Raman light scattering cross section in He II. A model Hamiltonian is used to describe interactions between quasiparticles for the helium system. The equation of motion for the bound roton pair state, which is taken to be a collective mode of quasiparticle pairs, is solved. The cross section for light scattering is then derived using Fermi's Golden Rule with the bound roton pair as the final state. Since the bound roton pair can decay into two free phonons, a phenomenological width r is included in the cross section. The peak position and shape of the observed cross section are both fitted using a binding energy of εB = 0.37 K for the bound roton pair.
Cross Section for the 165/Ho (n, 2n) 164/Ho Reaction at 15.6 MeV
It was the purpose of this investigation to bring together the ideas and procedures involved in the measurement of (n, 2n) reaction cross sections. Some of the inherent properties of the material under investigation (Holium) are involved in determining these relationships.
K-Shell Ionization Cross Sections of Selected Elements from Fe to As for Proton Bombardment from 0.5 to 2.0 MeV
The problem with which this investigation is concerned is that of making experimental measurements of proton-induced K-shell x-ray production cross sections and to study the dependence of these cross sections upon the energy of the incident proton. The measurements were made by detection of the characteristic x-rays emitted as a consequence of the ionization of the K-shell of the atom. The method for relating this characteristic x-ray emission to the x-ray production cross section is discussed in this work.
A Statistical Study of Hard X-Ray Solar Flares
The results of a statistical study of hard x-ray solar flares are presented in this dissertation. Two methods of analysis were used, the Diffusion Entropy (DE) method coupled with an analysis of the data distributions and the Rescaled Range (R/S) Method, sometimes referred to as "Hurst's method". Chapter one provides an introduction to hard x-ray flares within the context of the solar environment and a summary of the statistical paradigms solar astronomers currently work under. Chapter two presents the theory behind the DE and R/S methods. Chapter three presents the results of the two analysis methodologies: most notably important evidence of the conflicting results of the R/S and DE methods, evidence of a Levy statistical signature for the underlying dynamics of the hard x-ray flaring process and a possible separate memory signature for the waiting times. In addition, the stationary and nonstationary characteristics of the waiting times and peak intensities, are revealed. Chapter four provides a concise summary and discussion of the results.
Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology
In a sub-wavelength scale, even approaching to the atomic scale, nanoscale physics shows various novel phenomena. Since it has been named, nanoscience and nanotechnology has been employed to explore and exploit this small scale world. For example, with various functionalized features, nanowire (NW) has been making its leading position in the researches of physics, chemistry, biology, and engineering as a miniaturized building block. Its individual characteristic shows superior and unique features compared with its bulk counterpart. As one part of these research efforts and progresses, and with a part of the fulfillment of degree study, novel methodologies and device structures in nanoscale were devised and developed to show the abilities of high performing thermoelectrical, biological, and optical applications. A single β-SiC NW was characterized for its thermoelectric properties (thermal conductivity, Seebeck coefficient, and figure of merit) to compare with its bulk counterpart. The combined structure of Ag NW and ND was made to exhibit its ability of clear imaging of a fluorescent cell. And a plasmonic nanosture of silver (Ag) nanodot array and a β-SiC NW was fabricated to show a high efficient light harvesting device that allows us to make a better efficient solar cell. Novel nanomanipulation techniques were developed and employed in order to fabricate all of these measurement platforms. Additionally, one of these methodological approaches was used to successfully isolate a few layer graphene.
Scaling Behaviors and Mechanical Properties of Polymer Gels
Polymer gels undergo a volume phase transition in solvent in response to an infinitesimal environmental change. This remarkable phenomenon has resulted in many potential applications of polymer gels. The understanding of its mechanical properties has both scientific and technological importance. For this purpose, we have developed a novel method for measuring Poisson's ratio, which is one of the most important parameters determining the mechanical property of gels. Using this method, Poisson's ratio in N-isopropyacrylamide (NIPA) and polyacrylamide (PAAM) gels has been studied.
Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics.
In this work, I studied the hybrid system based on self-assembled guanosine crystal (SAGC) conjugated to wide-bandgap semiconductor gallium nitride (GaN). Guanosine is one of the four bases of DNA and has the lowest oxidation energy, which favors carrier transport. It also has large dipole moment. Guanosine molecules self-assemble to ribbon-like structure in confined space. GaN surface can have positive or negative polarity depending on whether the surface is Ga- or N-terminated. I studied SAGC in confined space between two electrodes. The current-voltage characteristics can be explained very well with the theory of metal-semiconductor-metal (MSM) structure. I-V curves also show strong rectification effect, which can be explained by the intrinsic polarization along the axis of ribbon-like structure of SAGC. GaN substrate property influences the properties of SAGC. So SAGC has semiconductor properties within the confined space up to 458nm. When the gap distance gets up to 484nm, the structure with guanosine shows resistance characteristics. The photocurrent measurements show that the bandgap of SAGC is about 3.3-3.4eV and affected by substrate properties. The MSM structure based on SAGC can be used as photodetector in UV region. Then I show that the periodic structure based on GaN and SAGC can have photonic bandgaps. The bandgap size and the band edges can be tuned by tuning lattice parameters. Light propagation and emission can be tuned by photonic crystals. So the hybrid photonic crystal can be potentially used to detect guanosine molecules. If guanosine molecules are used as functional linker to other biomolecules which usually absorb or emit light in blue to UV region, the hybrid photonic crystal can also be used to tune the coupling of light source to guanosine molecules, then to other biomolecules.
A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets
Thin target L-Shell x-ray production cross sections for protons incident on ₆₂Sm and ₇₀Yb in the energy range of 0.3 to 2.4 MeV/amu, alpha particles incident on ₆₂Sm, ₇₀Yb, and ₈₂Pb in the energy range of 0.15 to 4.8 MeV/amu, and lithium ions incident on ₅₈Ce, ₆₀Nd, ₆₂Sm, ₆₆Dy, ₆₇Ho, ₇₀Yb, and ₈₂Pb in the energy range of 0.8 to 4.4 MeV/amu have been measured. The cross section data have been compared to the planewave Born approximation (PWBA) and the PWBA modified to include binding energy and Coulomb deflection effects. The Lα₁,₂ x-ray production cross sections are best represented by the PWBA modified to include both the binding energy and Coulomb deflection effects (PWBA-BC) over the entire incident ion, incident energy, and target ranges studied. However, the Lγ₁ and Lγ₂,₃,₍₆₎ x-ray production cross sections are best represented by the PWBA except at the lower ion energies, where both the PWBA and PWBA-BC are in disagreement with the data. The comparison of Lα₁,₂/Lγ₂,₃,₍₆₎ ratios to theory reveals that the PWBA-BC does not predict the inflection point substantiated by the data, and the agreement between the data and the PWBA-BC becomes worse as the atomic number of the incident ion increases. Comparison of the PWBA modified to include binding energy effects CPWBA-B) and the PWBA modified to include Coulomb deflection effects (PWBA-C) to the Lα₁,₂, Lγ₁, and the Lγ₂,₃ cross sections for protons, alpha particles, and lithium ions incident on ₇₀Yb indicates that the PWBA-C overestimates the magnitude of the data but does describe the shape of the L₁-associated cross section while the PWBA-B underestimates the magnitude of the data but fails to predict the proper shape of the L₁-associated data. In order to evaluate the ability of the PWBA and the presently accepted modifications to the PWBA to fit the experimental …
Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips
The growth mechanism of chemical vapor deposition (CVD) grown homo-epitaxial diamond (110) and (111) films was studied using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM). In addition, the field emission properties of diamond coated molybdenum microtips were studied as a function of exposure to different gases.
Interaction of Plasmons and Excitons for Low-Dimension Semiconductors
The effects of surface plasmon for InGaN/GaN multi-quantum wells and ZnO nanoparticles optical linear and nonlinear emission efficiency had been experimentally studied. Due to the critical design for InGaN MQWs with inverted hexagonal pits based on GaN, both contribution of surface plasmon effect and image charge effect at resonant and off resonant frequencies were experimentally and theoretically investigated. With off- resonant condition, the InGaN MQWs emission significantly enhanced by metal nanoparticles. This enhancement was caused by the image charge effect, due to the accumulation of carriers to NPs region. When InGaN emission resonated with metal particles SP modes, surface Plasmon effect dominated the emission process. We also studied the surface plasmon effect for ZnO nanoparticles nonlinear optical processes, SHG and TPE. Defect level emission had more contribution at high incident intensity. Emissions are different for pumping deep into the bulk and near surface. A new assumption to increase the TPE efficiency was studied. We thought by using Au nanorods localized surface plasmon mode to couple the ZnO virtual state, the virtual state’s life time would be longer and experimentally lead the emission enhancement. We studied the TPE phenomena at high and near band gap energy. Both emission intensity and decay time results support our assumption. Theoretically, the carriers dynamic mechanism need further studies.
Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures
III-V nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solid-state white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thin-films on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new non-resonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensity-dependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement in light-emitting structures. This technique makes use of a spectral fitting model to extract information about electron-phonon interactions in the sample which can then be related to strain using theoretical modeling.
Carbon Contamination Measurements in Single Silicon Crystals
The intent of this investigation was to directly measure the amount of carbon contamination in a single silicon crystal and, in so doing, develop a mathematical procedure that would be applicable to other contaminants in other substances.
Fabrication and Study of the Optical Properties of 3D Photonic Crystals and 2D Graded Photonic Super-Crystals
In this dissertation, I am presenting my research on the fabrication and simulation of the optical properties of 3D photonic crystals and 2D graded photonic super-crystals. The 3D photonic crystals were fabricated using holographic lithography with a single, custom-built reflective optical element (ROE) and single exposure from a visible light laser. Fully 3D photonic crystals with 4-fold, 5- fold, and 6-fold symmetries were fabricated using the flexible, 3D printed ROE. In addition, novel 2D graded photonic super-crystals were fabricated using a spatial light modulator (SLM) in a 4f setup for pixel-by-pixel phase engineering. The SLM was used to control the phase and intensity of sets of beams to fabricate the 2D photonic crystals in a single exposure. The 2D photonic crystals integrate super-cell periodicities with 4-fold, 5-fold, and 6-fold symmetries and a graded fill fraction. The simulations of the 2D graded photonic super-crystals show extraordinary properties such as full photonic band gaps and cavity modes with Q-factors of ~106. This research could help in the development of organic light emitting diodes, high-efficiency solar cells, and other devices.
Transport Phenomena in Indium Arsenide at Low Temperatures
This thesis looks at the transport phenomena in indium arsenide at low temperatures.
Magnetotransport Properties of AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx
Multilayer structures of AlxIn1-xAsySb1-y/GaSb (0.37 £ x £ 0.43, 0.50 £ y £ 0.52), grown by molecular beam epitaxy on GaSb (100) substrates were characterized using variable temperature Hall and Shubnikov-de Haas techniques. For nominally undoped structures both p and n-type conductivity was observed. The mobilities obtained were lower than those predicted by an interpolation method using the binary alloys; therefore, a detailed analysis of mobility versus temperature data was performed to extract the appropriate scattering mechanisms. For p-type samples, the dominant mechanism was ionized impurity scattering at low temperatures and polar optical phonon scattering at higher temperatures. For n-type samples, ionized impurity scattering was predominant at low temperatures, and electron-hole scattering dominated for both the intermediate and high temperature range. Analyses of the Shubnikov-de Haas data indicate the presence of 2-D carrier confinement consistent with energy subbands in GaAszSb1-z potential wells. Epilayers of GaAs1-xSbx (0.19<x<0.71), grown by MBE on semi-insulating GaAs with various substrate orientations, were studied by absorption measurements over the temperature range of 4-300 K. The various substrate orientations were chosen to induce different degrees of spontaneous atomic ordering. The temperature dependence of the energy gap (Eg) for each of these samples was modeled using three semi-empirical relationships. The resulting coefficients for each model describe not only the temperature dependence of Eg for each of the alloy compositions investigated, but also for all published results for this alloy system. The effect of ordering in these samples was manifested by a deviation of the value of Eg from the value of the random alloy. The presence of CuPt-B type atomic ordering was verified by transmission electron diffraction measurements, and the order parameter was estimated for all the samples investigated and found to be larger for the samples grown on the (111) A offcut orientations. This result strongly suggests …
Local Phase Manipulation for Multi-Beam Interference Lithography for the Fabrication of Two and Three Dimensional Photonic Crystal Templates
In this work, we study the use of a spatial light modulator (SLM) for local manipulation of phase in interfering laser beams to fabricate photonic crystal templates with embedded, engineered defects. A SLM displaying geometric phase patterns was used as a digitally programmable phase mask to fabricate 4-fold and 6-fold symmetric photonic crystal templates. Through pixel-by-pixel phase engineering, digital control of the phases of one or more of the interfering beams was demonstrated, thus allowing change in the interference pattern. The phases of the generated beams were programmed at specific locations, resulting in defect structures in the fabricated photonic lattices such as missing lattice line defects, and single-motif lattice defects in dual-motif lattice background. The diffraction efficiency from the phase pattern was used to locally modify the filling fraction in holographically fabricated structures, resulting in defects with a different fill fraction than the bulk lattice. Through two steps of phase engineering, a spatially variant lattice defect with a 90° bend in a periodic bulk lattice was fabricated. Finally, by reducing the relative phase shift of the defect line and utilizing the different diffraction efficiency between the defect line and the background phase pattern, desired and functional defect lattices can be registered into the background lattice through direct imaging of the designed phase patterns.
Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells
Group III nitrides are efficient light emitters. The modification of internal optoelectronic properties of these materials due to strain, external or internal electric field are an area of interest. Insertion of metal nanoparticles (MNPs) (Ag, Au etc) inside the V-shaped inverted hexagonal pits (IHP) of InGaN/GaN quantum wells (QWs) offers the potential of improving the light emission efficiencies. We have observed redshift and blueshift due to the Au MNPs and Ag MNPs respectively. This shift could be due to the electric field created by the MNPs through electrostatic image charge. We have studied the ultrafast carrier dynamics of carriers in hybrid InGaN/GaN QWs. The change in quantum confinement stark effect due to MNPs plays an important role for slow and fast carrier dynamics. We have also observed the image charge effect on the ultrafast differential transmission measurement due to the MNPs. We have studied the non-linear absorption spectroscopy of these materials. The QWs behave as a discharging of a nanocapacitor for the screening of the piezoelectric field due to the photo-excited carriers. We have separated out screening and excitonic bleaching components from the main differential absorption spectra of InGaN/GaN QWs.
Emergence of Cooperation and Homeodynamics as a Result of Self Organized Temporal Criticality: From Biology to Physics
This dissertation is an attempt at establishing a bridge between biology and physics leading naturally from the field of phase transitions in physics to the cooperative nature of living systems. We show that this aim can be realized by supplementing the current field of evolutionary game theory with a new form of self-organized temporal criticality. In the case of ordinary criticality, the units of a system choosing either cooperation or defection under the influence of the choices done by their nearest neighbors, undergo a significant change of behavior when the intensity of social influence has a critical value. At criticality, the behavior of the individual units is correlated with that of all other units, in addition to the behavior of the nearest neighbors. The spontaneous transition to criticality of this work is realized as follows: the units change their behavior (defection or cooperation) under the social influence of their nearest neighbors and update the intensity of their social influence spontaneously by the feedback they get from the payoffs of the game (environment). If units, which are selfish, get higher benefit with respect to their previous play, they increase their interest to interact with other units and vice versa. Doing this, the behavior of single units and the whole system spontaneously evolve towards criticality, thereby realizing a global behavior favoring cooperation. In the case when the interacting units are oscillators with their own periodicity, homeodynamics concerns, the individual payoff is the synchronization with the nearest neighbors (i.e., lowering the energy of the system), the spontaneous transition to criticality generates fluctuations characterized by the joint action of periodicity and crucial events of the same kind as those revealed by the current analysis of the dynamics of the brain. This result is expected to explain the efficiency of enzyme catalyzers, on the basis …
A Study of Emitter Drift in Transistors
The purpose of this investigation was to determine the parameters of emitter drift and to suggest a mechanism for this phenomenon.
Nonlinear Absorption Initiated Laser-Induced Damage in [Gamma]-Irradiated Fused Silica, Fluorozirconate Glass and Cubic Zirconia
The contributions of nonlinear absorption processes to laser-induced damage of three selected groups of transparent dielectrics were investigated. The studied materials were irradiated and non-irradiated fused silica, doped and undoped fluorozirconate glass and cubic zirconia stabilized with yttria. The laser-induced damage thresholds, prebreakdown transmission, and nonlinear absorption processes were studied for several specimens of each group. Experimental measurements were performed at wavelengths of 1064 nm and 532 nm using nanosecond and picosecond Nd:YAG laser pulses. In the irradiated fused silica and fluorozirconate glasses, we found that there is a correlation between the damage thresholds at wavelength λ and the linear absorption of the studied specimens at λ/2. In other words, the laser-induced breakdown is related to the probability of all possible two-photon transitions. The results are found to be in excellent agreement with a proposed two-photon-initiated electron avalanche breakdown model. In this model, the initial "seed" electrons for the formation of an avalanche are produced by two-photon excitations of E' centers and metallic impurity levels which are located within the bandgaps of irradiated Si02 and fluorozirconate glasses, respectively. Once the initial electrons are liberated in the conduction band, a highly absorbing plasma is formed by avalanche impact ionization. The resultant heating causes optical damage. In cubic zirconia, we present direct experimental evidence that significant energy is deposited in the samples at wavelength 532 nm prior to electron avalanche formation. The mechanism is found to be due to formation of color centers (F+ or F° centers) by the two-photon absorption process. The presence of these centers was directly shown by transmission measurements. The two-photon absorption (2PA) process was independently investigated and 2PA coefficients obtained. The accumulated effects of the induced centers on the nonlinear absorption measurements were also considered and the 2PA coefficients were measured using short pulses where this effect …
Design, Construction, and Application of an Electrostatic Quadrupole Doublet for Heavy Ion Nuclear Microprobe Research
A nuclear microprobe, typically consisting of 2 - 4 quadrupole magnetic lenses and apertures serving as objective and a collimating divergence slits, focuses MeV ions to approximately 1 x 1 μm for modification and analysis of materials. Although far less utilized, electrostatic quadrupole fields similarly afford strong focusing of ions and have the added benefit of doing so independent of ion mass. Instead, electrostatic quadrupole focusing exhibits energy dependence on focusing ions. A heavy ion microprobe could extend the spatial resolution of conventional microprobe techniques to masses untenable by quadrupole magnetic fields. An electrostatic quadrupole doublet focusing system has been designed and constructed using several non-conventional methods and materials for a wide range of microprobe applications. The system was modeled using the software package "Propagate Rays and Aberrations by Matrices" which quantifies system specific parameters such as demagnification and intrinsic aberrations. Direct experimental verification was obtained for several of the parameters associated with the system. Details of the project and with specific applications of the system are presented.
Cross Section Measurements in Praseodymium-141 as a Function of Neutron Bombarding Energy
Using the parallel disk method of activation analysis, the (n,2n) reaction cross section in 141-Pr was measured as a function of neutron energy in the range 15.4 to 18.4 MeV. The bombarding neutrons were produced from the 3-T(d,n)4-He reaction, where the deuterons were accelerated by the 3-MV Van de Graff generator of the North Texas Regional Physics Laboratory in Denton, Texas.
The Temperature Dependence of Magnetic Susceptibility of Galvinoxyl
The twofold purpose of this investigation was to design and construct an apparatus for direct magnetic susceptibility measurements as a function of temperature and to provide the complete susceptibility characterization of the free radical galvinoxyl in the room temperature-liquid nitrogen range.
Nuclear Magnetic Resonance in Hydrated Crystals - Potassium Oxalate Monohydrate
The problem of this study was the measurement of the proton-proton separation in the water molecule of hydration in a single crystal of potassium oxalate monohydrate.
Placing High-Redshift Quasars in Perspective: Unifying Distant Quasars with Their Lower Redshift Counterparts through Near-Infrared Spectroscopy
I present spectroscopic measurements for 260 sources from the Gemini Near Infrared Spectrograph–Distant Quasar Survey (GNIRS-DQS). Being the largest uniform, homogeneous survey of its kind, it represents a flux-limited sample of Sloan Digital Sky Survey (SDSS) quasars at 1.5 < z < 3.5. A combination of the GNIRS and SDSS spectra covers principal quasar diagnostic features, chiefly the C IV λ1549, Mg II λλ2798, 2803, Hβ λ4861, and [O III] λλ4959, 5007 emission lines, in each source. The spectral inventory is utilized primarily to develop prescriptions for obtaining more accurate and precise redshifts, black hole masses, and accretion rates for all quasars. Additionally, the measurements facilitate an understanding of the dependence of rest-frame ultraviolet–optical spectral properties of quasars on redshift, luminosity, and Eddington ratio, and test whether the physical properties of the quasar central engine evolve over cosmic time.
Complex Numbers in Quantum Theory
In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with Ehrenfest, wrote the following about the new theory: “What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real function.” This seemingly simple issue remains unexplained almost ninety years later. In this dissertation I elucidate the physical and theoretical origins of the complex requirement. I identify a freedom/constraint situation encountered by vectors when, employed in accordance with adopted quantum representational methodology, and representing angular momentum states in particular. Complex vectors, quite simply, provide more available adjustable variables than do real vectors. The additional variables relax the constraint situation allowing the theory’s representational program to carry through. This complex number issue, which lies at the deepest foundations of the theory, has implications for important issues located higher in the theory. For example, any unification of the classical and quantum accounts of the settled order of nature, will rest squarely on our ability to account for the introduction of the imaginary unit.
Microwave Line Widths of the Asymmetric Top Formic Acid Molecule
This work consisted of an experimental investigation of the formic acid (HCOOH) molecule's rotational spectrum. Measurements of line widths were obtained for J = 5, 12, 13, 19, and 20 for a pressure range from 1 to 10 microns. A linear behavior between Av and p was observed as predicted by theory. The line width parameter Avp was observed to depend on the quantum number J. Hard sphere collision diameters b1 were calculated using the obtained AvP values. These deduced hard sphere values were found to be larger than the physical size of the molecule. This result was found to be in general agreement with other investigation in which long range forces (dipole-dipole) dominate.
Gamma Rays Resulting from Neutron Scattering in Cesium
The purpose of this investigation was to attempt to resolve the energy levels of Cs133 that can be excited by inelastic scattering of 14 Mev neutrons.
Nuclear Magnetic Resonance in a Crystalline Stable Free Radical--Wurster's Blue Perchlorate
This thesis investigates the nuclear magnetic resonance in a crystalline stable free radical.
Gamma Rays from Cs¹³³ by Inelastic Scattering of Neutrons
The purpose of this investigation was to observe the excited states of the Cs¹³³ nucleus when neutrons are inelastically scattered from the nucleus.
Design and Testing of a Positive Ion Accelerator and Necessary Vacuum System
This thesis is a study of the design and testing of a positive ion accelerator and necessary vacuum system.
Degenerate Four Wave Mixing of Short and Ultrashort Light Pulses
This dissertation presents experimental and theoretical studies of transient degenerate four wave mixing (DFWM) in organic dyes. Chapter 1 is an introduction to DFWM. Chapter 2 describes DFWM experiments that were performed in the gain medium of a dye laser. Chapter 3 presents the theory of DFWM of short pulses in three level saturable media. Chapter 4 presents DFWM experiments of femtosecond pulses in the saturable absorber of a passively modelocked ring dye laser. Chapter 5 presents the theory of DFWM of ultrashort pulses in resonant media.
L-Shell X-Ray Production Cross Sections for ₂₀Ca, ₂₆Fe, ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Hydrogen, Helium, and Lithium Ions
L-shell x-ray production cross sections are presented for Fe, Ni, Cu, Zn, Ga, and Ge by 0.5- to 5.0-MeV protons and by 0.5- to 8.0-MeV helium ions and Ca, Fe, Ni, Cu, and Ge by 0.75- to 4.5-MeV lithium ions. These measurements are compared to the first Born theory and the perturbed-stationary- state theory with energy-loss, Coulomb deflection, and relativistic corrections (ECPSSR). The results are also compared to previous experimental investigations. The high precision x-ray measurements were performed with a windowless Si(Li) detector. The efficiency of the detector was determined by the use of thin target atomic-field bremsstrahlung produced by 66.5 keV electrons. The measured bremsstrahlung spectra were compared to theoretical bremsstrahlung distributions in order to obtain an efficiency versus energy curve. The targets for the measurement were manufactured by the vacuum evaporation of the target element onto thin foils of carbon. Impurities in the carbon caused interferences inthe L-shell x-ray peaks. Special cleansing procedures were developed that reduced the impurity concentrations in the carbon foil, making the use of less than 5 μg/cm^2 targets possible. The first Born theory is seen to greatly overpredict the data at low ion energies. The ECPSSR theory matches the data very well at the high energy region. At low energies, while fitting the data much more closely than the first Born theory, the ECPSSR theory does not accurately predict the trend of the data. This is probably due to the onset of molecular-orbital effects, a mechanism not accounted for in the ECPSSR theory.
Extending the Capabilities of Continuum Embeddings in First-Principle Simulations of Materials
In recent years, continuum models of solvation have had exceptional success in materials simulations as well as condensed matter physics. They can easily capture the effects of disordered systems, such as neutral liquids or electrolytes solutions, on material interfaces without the need for expensive statistical sampling. The Environ library (www.quantum-environ.org) implements different continuum models and correction schemes, which is the focus of this presentation. Recently refactored into a stand-alone library, many changes have been introduced in Environ, making it more flexible and computationally efficient. Introduction of a double-cell formalism allows for faster ab initio DFT calculations while reparameterization of soft-sphere continuum model allows for smaller density cutoffs. Furthermore, Environ's periodic boundary conditions correction schemes have been expanded by including the AFC90 library, which allows for faster DFT calculations of partially periodic systems, such as slabs, wires, and isolated molecules. Finally, stand-alone Environ can now provide atomic and molecular descriptors, which can be used to characterize solvated interfaces, e.g. in machine learning applications. The specific details of the implementations are reviewed as well as their efficiency and some choice applications for different calculation setups and systems.
Electrical Conductivity in Thin Films
This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.
Shubnikov-de Haas Effect in Arsenic
This thesis studies the Shubnikov-de Haas effect in arsenic.
Ultrasensitive Technique for Measurement of Two-Photon Absorption
Intensive demands have arisen to characterize nonlinear optical properties of materials for applications involving optical limiters, waveguide switches and bistable light switches. The technique of Pulse Delay Modulation is described which can monitor nonlinear changes in transmission with shot noise limited signal-to-noise ratios even in the presence of large background signals. The theoretical foundations of the experiment are presented followed by actual measurements of beam depletion due to second harmonic generation in a LiIO3 crystal and two-photon absorption in the semiconductor ZnSe. Sensitivity to polarization rotation arising from the Kerr Effect in carbon disulfide, saturable absorber relaxation in modelocking dyes and photorefractive effects in ZnSe are demonstrated. The sensitivity of Pulse Delay Modulation is combined with Fabry-Perot enhancement to allow the measurement of two-photon absorption in a 0.46pm thick interference filter spacer layer. Also included is a study of nonlinear optical limiting arising from dielectric breakdown in gases.
Numerical Investigations of Quantum Effects of Chaos
The quantum dynamics of minimum uncertainty wave packets in a system described by the surface-state-electron (SSE) Hamiltonian are studied herein.
Investigation of Selected Optically-Active Nanosystems Fashioned using Ion Implantation
Opto-electronic semiconductor technology continues to grow at an accelerated pace, as the industry seeks to perfect devices such as light emitting diodes for purposes of optical processing and communication. A strive for greater efficiency with shrinking device dimensions, continually pushes the technology from both a design and materials aspect. Nanosystems such a quantum dots, also face new material engineering challenges as they enter the realm of quantum mechanics, with each system and material having markedly different electronic properties. Traditionally, the semiconductor industry has focused on materials such Group II-VI and III-V compounds as the basis material for future opto-electronic needs. Unfortunately, these material systems can be expensive and have difficulties integrating into current Si-based technology. The industry is reluctant to leave silicon due in part to silicon's high quality oxide, and the enormous amount of research invested into silicon based circuit fabrication. Although recently materials such as GaN are starting to dominate the electro-optical industry since a Si-based substitute has not been found. The purpose of the dissertation was to examine several promising systems that could be easily integrated into current Si-based technology and also be produced using simple inexpensive fabrication techniques such ion implantation. The development of optically active nano-sized precipitates in silica to form the active layer of an opto-electronic device was achieved with ion implantation and thermal annealing. Three material systems were investigated. These systems consisted of carbon, silicon and metal silicide based nanocrystals. The physical morphology and electronic properties were monitored using a variety of material characterization techniques. Rutherford backscattering/channeling were used to monitor elemental concentrations, photoluminescence was used to monitor the opto-electronic properties and transmission electron microscopy was used to study the intricate morphology of individual precipitates. The electronic properties and the morphology were studied as a function of implant dose, anneal times and anneal …
The Dielectric Constant of Galvinoxyl
The molecules in many substances are know to undergo at characteristic temperatures a change in their rotational freedom in the solid state, signifying either a change in structure of the material of the onset of limited rotation of the molecule about some symmetry axis. The purpose of this research was to determine from dielectric constant measurements over the 100°K-420°K temperature range whether or not the organic free radical galvinoxyl and its diamagnetic parent molecule, dihydroxydiphenylmethane, undergo any such transitions.
The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene
In this dissertation, I present that at a vacuum of 3×10-7 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of growth of ZnO, GaN and ZnS is provided. In addition, Cs deposition on GaN nanostructures at ultra-high vacuum results in 30% decrease in turn-on voltage and 60% in work function. The improvement in FE properties could be due to a Cs-induced space-charge layer at the surface that reduces the barrier for FE and lowers the work function. I describe a new phenomenon, in which the resistivity of CVD-grown graphene increases to a higher saturated value under light exposure, and depends on the wavelength of the light—the shorter the wavelength, the higher the resistivity. First-principle calculations and theoretical analysis based on density functional theory show that (1) a water molecule close to a graphene defect is easier to be split than that of the case of no defect existing and (2) there are a series of meta-stable partially disassociated states for an interfacial water molecule. Calculated disassociation energies are from 2.5 eV to 4.6 eV, that match the experimental observation range of light wavelength from visible to 254 nm UV light under which the resistivity of CVD-grown graphene is increased.
Theoretical and Experimental Linewidth Parameters in the Rotational Spectrum of Nitrogen Dioxide
Contributions to the second order collision efficiency function S ⁽²⁾ (b), used in semiclassical perturbation approaches to pressure broadening of microwave and infrared spectra, due to several leading terms, dipole and quadrupole components, in the expansion of the intermolecular interaction energy are derived by method of irreducible spherical tensor operators for molecules of arbitrary symmetry. Results are given explicitly in terms of dipole and quadrupole line strengths. General expressions for dipole moment line strength in the asymmetric rotor basis as well as quadrupole moment line strength for the special case of molecules with two independent quadrupole moment components are derived. Computer programs for calculating linewidth parameters in the rotational spectrum of ¹⁴NO₂ based on Anderson and Murphy and Boggs theories are presented.
Back to Top of Screen