Investigation of Selected Optically-Active Nanosystems Fashioned using Ion Implantation

Description:

Opto-electronic semiconductor technology continues to grow at an accelerated pace, as the industry seeks to perfect devices such as light emitting diodes for purposes of optical processing and communication. A strive for greater efficiency with shrinking device dimensions, continually pushes the technology from both a design and materials aspect. Nanosystems such a quantum dots, also face new material engineering challenges as they enter the realm of quantum mechanics, with each system and material having markedly different electronic properties. Traditionally, the semiconductor industry has focused on materials such Group II-VI and III-V compounds as the basis material for future opto-electronic needs. Unfortunately, these material systems can be expensive and have difficulties integrating into current Si-based technology. The industry is reluctant to leave silicon due in part to silicon's high quality oxide, and the enormous amount of research invested into silicon based circuit fabrication. Although recently materials such as GaN are starting to dominate the electro-optical industry since a Si-based substitute has not been found. The purpose of the dissertation was to examine several promising systems that could be easily integrated into current Si-based technology and also be produced using simple inexpensive fabrication techniques such ion implantation. The development of optically active nano-sized precipitates in silica to form the active layer of an opto-electronic device was achieved with ion implantation and thermal annealing. Three material systems were investigated. These systems consisted of carbon, silicon and metal silicide based nanocrystals. The physical morphology and electronic properties were monitored using a variety of material characterization techniques. Rutherford backscattering/channeling were used to monitor elemental concentrations, photoluminescence was used to monitor the opto-electronic properties and transmission electron microscopy was used to study the intricate morphology of individual precipitates. The electronic properties and the morphology were studied as a function of implant dose, anneal times and anneal temperatures.

Creator(s): Mitchell, Lee
Creation Date: May 2006
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 221
Past 30 days: 7
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2006
  • Digitized: April 22, 2008
Description:

Opto-electronic semiconductor technology continues to grow at an accelerated pace, as the industry seeks to perfect devices such as light emitting diodes for purposes of optical processing and communication. A strive for greater efficiency with shrinking device dimensions, continually pushes the technology from both a design and materials aspect. Nanosystems such a quantum dots, also face new material engineering challenges as they enter the realm of quantum mechanics, with each system and material having markedly different electronic properties. Traditionally, the semiconductor industry has focused on materials such Group II-VI and III-V compounds as the basis material for future opto-electronic needs. Unfortunately, these material systems can be expensive and have difficulties integrating into current Si-based technology. The industry is reluctant to leave silicon due in part to silicon's high quality oxide, and the enormous amount of research invested into silicon based circuit fabrication. Although recently materials such as GaN are starting to dominate the electro-optical industry since a Si-based substitute has not been found. The purpose of the dissertation was to examine several promising systems that could be easily integrated into current Si-based technology and also be produced using simple inexpensive fabrication techniques such ion implantation. The development of optically active nano-sized precipitates in silica to form the active layer of an opto-electronic device was achieved with ion implantation and thermal annealing. Three material systems were investigated. These systems consisted of carbon, silicon and metal silicide based nanocrystals. The physical morphology and electronic properties were monitored using a variety of material characterization techniques. Rutherford backscattering/channeling were used to monitor elemental concentrations, photoluminescence was used to monitor the opto-electronic properties and transmission electron microscopy was used to study the intricate morphology of individual precipitates. The electronic properties and the morphology were studied as a function of implant dose, anneal times and anneal temperatures.

Degree:
Level: Doctoral
Discipline: Physics
Language(s):
Subject(s):
Keyword(s): nanocrystal | ion implantation | silicon | carbon | osmium silicide
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 70690084 |
  • ARK: ark:/67531/metadc5259
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Mitchell, Lee
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.