Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology

Description:

In a sub-wavelength scale, even approaching to the atomic scale, nanoscale physics shows various novel phenomena. Since it has been named, nanoscience and nanotechnology has been employed to explore and exploit this small scale world. For example, with various functionalized features, nanowire (NW) has been making its leading position in the researches of physics, chemistry, biology, and engineering as a miniaturized building block. Its individual characteristic shows superior and unique features compared with its bulk counterpart. As one part of these research efforts and progresses, and with a part of the fulfillment of degree study, novel methodologies and device structures in nanoscale were devised and developed to show the abilities of high performing thermoelectrical, biological, and optical applications. A single β-SiC NW was characterized for its thermoelectric properties (thermal conductivity, Seebeck coefficient, and figure of merit) to compare with its bulk counterpart. The combined structure of Ag NW and ND was made to exhibit its ability of clear imaging of a fluorescent cell. And a plasmonic nanosture of silver (Ag) nanodot array and a β-SiC NW was fabricated to show a high efficient light harvesting device that allows us to make a better efficient solar cell. Novel nanomanipulation techniques were developed and employed in order to fabricate all of these measurement platforms. Additionally, one of these methodological approaches was used to successfully isolate a few layer graphene.

Creator(s): Lee, Kyung-Min
Creation Date: August 2011
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 225
Past 30 days: 6
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Publisher Info: Web: www.unt.edu
Place of Publication: Denton, Texas
Date(s):
  • Creation: August 2011
Description:

In a sub-wavelength scale, even approaching to the atomic scale, nanoscale physics shows various novel phenomena. Since it has been named, nanoscience and nanotechnology has been employed to explore and exploit this small scale world. For example, with various functionalized features, nanowire (NW) has been making its leading position in the researches of physics, chemistry, biology, and engineering as a miniaturized building block. Its individual characteristic shows superior and unique features compared with its bulk counterpart. As one part of these research efforts and progresses, and with a part of the fulfillment of degree study, novel methodologies and device structures in nanoscale were devised and developed to show the abilities of high performing thermoelectrical, biological, and optical applications. A single β-SiC NW was characterized for its thermoelectric properties (thermal conductivity, Seebeck coefficient, and figure of merit) to compare with its bulk counterpart. The combined structure of Ag NW and ND was made to exhibit its ability of clear imaging of a fluorescent cell. And a plasmonic nanosture of silver (Ag) nanodot array and a β-SiC NW was fabricated to show a high efficient light harvesting device that allows us to make a better efficient solar cell. Novel nanomanipulation techniques were developed and employed in order to fabricate all of these measurement platforms. Additionally, one of these methodological approaches was used to successfully isolate a few layer graphene.

Degree:
Discipline: Physics
Level: Doctoral
PublicationType: Doctoral Dissertation
Language(s):
Subject(s):
Keyword(s): Nanoscale | SiC | nanomanipulation
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • LOCAL-CONT-NO: lee_kyung-min
  • ARK: ark:/67531/metadc84238
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
Holder: Lee, Kyung-Min
License: Copyright
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.