Search Results

Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints
The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the region bounded by two coaxial cylinders of height 1 with the outer cylinder having radius 1 and the inner having radius ρ. The problem is to find a mapping, u, from Ω into R^3 which agrees with a given function v on the surfaces of the cylinders and minimizes the energy function over the set of functions in the Sobolev space H^(1,2)(Ω; R^3) having norm 1 almost everywhere. In the variational formulation, the norm 1 condition is emulated by a constraint function B. The direction of descent studied here is given by a projected gradient, called a B-gradient, which involves the projection of a Sobolev gradient onto the tangent space for B. A numerical implementation of the algorithm, the results of which agree with the theoretical results and which is independent of any strong properties of the domain, is described. In chapter 2, the Sobolev space setting and a significant projection in the theory of Sobolev gradients are discussed. The variational formulation is introduced in Chapter 3, where the issues of differentiability and existence of gradients are explored. A theorem relating the B-gradient to the theory of Lagrange multipliers is stated as well. Basic theorems regarding the continuous steepest descent given by the Sobolev and B-gradients are stated in Chapter 4, and conditions for convergence in the application to the liquid crystal problem are given as well. Finally, in Chapter 5, the algorithm is described and numerical results are examined.
Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative Anywhere
In this paper, we study continuous functions with no finite or infinite one-sided derivative anywhere. In 1925, A. S. Beskovitch published an example of such a function. Since then we call them Beskovitch functions. This construction is presented in chapter 2, The example was simple enough to clear the doubts about the existence of Besicovitch functions. In 1932, S. Saks showed that the set of Besicovitch functions is only a meager set in C[0,1]. Thus the Baire category method for showing the existence of Besicovitch functions cannot be directly applied. A. P. Morse in 1938 constructed Besicovitch functions. In 1984, Maly revived the Baire category method by finding a non-empty compact subspace of (C[0,1], || • ||) with respect to which the set of Morse-Besicovitch functions is comeager.
Cycles and Cliques in Steinhaus Graphs
In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian.
Intuition versus Formalization: Some Implications of Incompleteness on Mathematical Thought
This paper describes the tension between intuition about number theory and attempts to formalize it. I will first examine the root of the dilemma, Godel's First Incompleteness Theorem, which demonstrates that in any reasonable formalization of number theory, there will be independent statements. After proving the theorem, I consider some of its consequences on intuition, focusing on Freiling's "Dart Experiment" which is based on our usual notion of the real numbers as a line. This experiment gives an apparent refutation of the Axiom of Choice and the Continuum Hypothesis; however, it also leads to an equally apparent paradox. I conclude that such paradoxes are inevitable as the formalization of mathematics takes us further from our initial intuitions.
Multifractal Measures
The purpose of this dissertation is to introduce a natural and unifying multifractal formalism which contains the above mentioned multifractal parameters, and gives interesting results for a large class of natural measures. In Part 2 we introduce the proposed multifractal formalism and study it properties. We also show that this multifractal formalism gives natural and interesting results when applied to (nonrandom) graph directed self-similar measures in Rd and "cookie-cutter" measures in R. In Part 3 we use the multifractal formalism introduced in Part 2 to give a detailed discussion of the multifractal structure of random (and hence, as a special case, non-random) graph directed self-similar measures in R^d.
The Cohomology for the Nil Radical of a Complex Semisimple Lie Algebra
Let g be a complex semisimple Lie algebra, Vλ an irreducible g-module with high weight λ, pI a standard parabolic subalgebra of g with Levi factor £I and nil radical nI, and H*(nI, Vλ) the cohomology group of Λn'I ⊗Vλ. We describe the decomposition of H*(nI, Vλ) into irreducible £1-modules.
Topics in Fractal Geometry
In this dissertation, we study fractal sets and their properties, especially the open set condition, Hausdorff dimensions and Hausdorff measures for certain fractal constructions.
Back to Top of Screen