Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints

PDF Version Also Available for Download.

Description

The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the region bounded by two coaxial cylinders of height 1 with the outer cylinder having radius 1 and the inner having radius ρ. The problem is to find a mapping, u, from Ω into R^3 which agrees with a given function v on the surfaces of the cylinders and minimizes the energy function over the set of functions in the Sobolev space H^(1,2)(Ω; R^3) having norm 1 almost everywhere. In the variational formulation, the norm 1 ... continued below

Physical Description

vi, 81 leaves : ill.

Creation Information

Garza, Javier, 1965- August 1994.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 42 times , with 5 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Garza, Javier, 1965-

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the region bounded by two coaxial cylinders of height 1 with the outer cylinder having radius 1 and the inner having radius ρ. The problem is to find a mapping, u, from Ω into R^3 which agrees with a given function v on the surfaces of the cylinders and minimizes the energy function over the set of functions in the Sobolev space H^(1,2)(Ω; R^3) having norm 1 almost everywhere. In the variational formulation, the norm 1 condition is emulated by a constraint function B. The direction of descent studied here is given by a projected gradient, called a B-gradient, which involves the projection of a Sobolev gradient onto the tangent space for B. A numerical implementation of the algorithm, the results of which agree with the theoretical results and which is independent of any strong properties of the domain, is described. In chapter 2, the Sobolev space setting and a significant projection in the theory of Sobolev gradients are discussed. The variational formulation is introduced in Chapter 3, where the issues of differentiability and existence of gradients are explored. A theorem relating the B-gradient to the theory of Lagrange multipliers is stated as well. Basic theorems regarding the continuous steepest descent given by the Sobolev and B-gradients are stated in Chapter 4, and conditions for convergence in the application to the liquid crystal problem are given as well. Finally, in Chapter 5, the algorithm is described and numerical results are examined.

Physical Description

vi, 81 leaves : ill.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1994

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • Jan. 8, 2015, 9:05 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 2
Past 30 days: 5
Total Uses: 42

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Garza, Javier, 1965-. Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints, dissertation, August 1994; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc278362/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .