Mode-of-Action Uncertainty for Dual-Mode Carcinogens: A Bounding Approach for Naphthalene-Induced Nasal Tumors in Rats Based on PBPK and 2-Stage Stochastic Cancer Risk Models

PDF Version Also Available for Download.

Description

A relatively simple, quantitative approach is proposed to address a specific, important gap in the appr approach recommended by the USEPA Guidelines for Cancer Risk Assessment to oach address uncertainty in carcinogenic mode of action of certain chemicals when risk is extrapolated from bioassay data. These Guidelines recognize that some chemical carcinogens may have a site-specific mode of action (MOA) that is dual, involving mutation in addition to cell-killing induced hyperplasia. Although genotoxicity may contribute to increased risk at all doses, the Guidelines imply that for dual MOA (DMOA) carcinogens, judgment be used to compare and assess results obtained using … continued below

Physical Description

PDF-file: 49 pages; size: 3.1 Mbytes

Creation Information

Bogen, K T May 11, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 120 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A relatively simple, quantitative approach is proposed to address a specific, important gap in the appr approach recommended by the USEPA Guidelines for Cancer Risk Assessment to oach address uncertainty in carcinogenic mode of action of certain chemicals when risk is extrapolated from bioassay data. These Guidelines recognize that some chemical carcinogens may have a site-specific mode of action (MOA) that is dual, involving mutation in addition to cell-killing induced hyperplasia. Although genotoxicity may contribute to increased risk at all doses, the Guidelines imply that for dual MOA (DMOA) carcinogens, judgment be used to compare and assess results obtained using separate 'linear' (genotoxic) vs. 'nonlinear' (nongenotoxic) approaches to low low-level risk extrapolation. However, the Guidelines allow the latter approach to be used only when evidence is sufficient t to parameterize a biologically based model that reliably o extrapolates risk to low levels of concern. The Guidelines thus effectively prevent MOA uncertainty from being characterized and addressed when data are insufficient to parameterize such a model, but otherwise clearly support a DMOA. A bounding factor approach - similar to that used in reference dose procedures for classic toxicity endpoints - can address MOA uncertainty in a way that avoids explicit modeling of low low-dose risk as a function of administere administered or internal dose. Even when a 'nonlinear' toxicokinetic model cannot be fully validated, implications of DMOA uncertainty on low low-dose risk may be bounded with reasonable confidence when target tumor types happen to be extremely rare. This concept was i illustrated llustrated for a likely DMOA rodent carcinogen naphthalene, specifically to the issue of risk extrapolation from bioassay data on naphthalene naphthalene-induced nasal tumors in rats. Bioassay data, supplemental toxicokinetic data, and related physiologically based p pharmacokinetic and 2 harmacokinetic 2-stage stochastic carcinogenesis modeling results all clearly indicate that naphthalene is a DMOA carcinogen. Plausibility bounds on rat rat-tumor tumor-type specific DMOA DMOA-related uncertainty were obtained using a 2-stage model adapted to reflec reflect the empirical link between genotoxic and cytotoxic effects of t the most potent identified genotoxic naphthalene metabolites, 1,2 1,2- and 1,4 1,4-naphthoquinone. Bound Bound-specific 'adjustment' factors were then used to reduce naphthalene risk estimated by linear ex extrapolation (under the default genotoxic MOA assumption), to account for the DMOA trapolation exhibited by this compound.

Physical Description

PDF-file: 49 pages; size: 3.1 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 11, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 7, 2016, 5:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 120

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bogen, K T. Mode-of-Action Uncertainty for Dual-Mode Carcinogens: A Bounding Approach for Naphthalene-Induced Nasal Tumors in Rats Based on PBPK and 2-Stage Stochastic Cancer Risk Models, report, May 11, 2007; Livermore, California. (https://digital.library.unt.edu/ark:/67531/metadc895591/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen