The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution and Metabolism

PDF Version Also Available for Download.

Description

Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for {approx}20% of global carbon fixation. We report the 34 Mbp draft nuclear genome of the marine diatom, Thalassiosira pseudonana and its 129 Kbp plastid and 44 Kbp mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, utilization of a range of nitrogenous compounds and a complete urea cycle, all attributes that allow diatoms to prosper in the … continued below

Physical Description

PDF-file: 31 pages; size: 0 Kbytes

Creation Information

Armbrust, E. V.; Berges, J. A.; Bowler, C.; Green, B. R.; Martinez, D.; Putnam, N. H. et al. November 14, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 334 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for {approx}20% of global carbon fixation. We report the 34 Mbp draft nuclear genome of the marine diatom, Thalassiosira pseudonana and its 129 Kbp plastid and 44 Kbp mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, utilization of a range of nitrogenous compounds and a complete urea cycle, all attributes that allow diatoms to prosper in the marine environment. Diatoms are unicellular, photosynthetic, eukaryotic algae found throughout the world's oceans and freshwater systems. They form the base of short, energetically-efficient food webs that support large-scale coastal fisheries. Photosynthesis by marine diatoms generates as much as 40% of the 45-50 billion tonnes of organic carbon produced each year in the sea (1), and their role in global carbon cycling is predicted to be comparable to that of all terrestrial rainforests combined (2, 3). Over geological time, diatoms may have influenced global climate by changing the flux of atmospheric carbon dioxide into the oceans (4). A defining feature of diatoms is their ornately patterned silicified cell wall or frustule, which displays species-specific nano-structures of such fine detail that diatoms have long been used to test the resolution of optical microscopes. Recent attention has focused on biosynthesis of these nano-structures as a paradigm for future silica nanotechnology (5). The long history (over 180 million years) and dominance of diatoms in the oceans is reflected by their contributions to vast deposits of diatomite, most cherts and a significant fraction of current petroleum reserves (6). As photosynthetic heterokonts, diatoms reflect a fundamentally different evolutionary history from the higher plants that dominate photosynthesis on land. Higher plants and green, red and glaucophyte algae are derived from a primary endosymbiotic event in which a non-photosynthetic eukaryote acquired a chloroplast by engulfing (or being invaded by) a prokaryotic cyanobacterium. In contrast, dominant bloom-forming eukaryotic phytoplankton in the ocean, such as diatoms and haptophytes, were derived by secondary endosymbiosis whereby a non-photosynthetic eukaryote acquired a chloroplast by engulfing a photosynthetic eukaryote, probably a red algal endosymbiont (Fig. 1). Each endosymbiotic event led to new combinations of genes derived from the hosts and endosymbionts (7). Prior to this project, relatively few diatom genes had been sequenced, few chromosome numbers were known, and genetic maps did not exist (8). The ecological and evolutionary importance of diatoms motivated our sequencing and analysis of the nuclear, plastid, and mitochondrial genomes of the marine centric diatom Thalassiosira pseudonana.

Physical Description

PDF-file: 31 pages; size: 0 Kbytes

Source

  • Journal Name: Science; Journal Volume: 306; Journal Issue: 5693

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-217109
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 888580
  • Archival Resource Key: ark:/67531/metadc885054

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 14, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • July 14, 2021, 2:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 334

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Armbrust, E. V.; Berges, J. A.; Bowler, C.; Green, B. R.; Martinez, D.; Putnam, N. H. et al. The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution and Metabolism, article, November 14, 2005; Livermore, California. (https://digital.library.unt.edu/ark:/67531/metadc885054/: accessed July 17, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen