Influence of fluid-property variation on turbulent convective heat transfer in vertical annular channel flows.

PDF Version Also Available for Download.

Description

Influence of strongly-varying properties of supercritical-pressure fluids on turbulent convective heat transfer is investigated using direct numerical simulation. We consider thermally-developing upward flows in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. CO2 is chosen as the working fluid at a pressure to 8 Mpa, and the inlet Reynolds number based on the channel hydraulic diameter and the bulk velocity is Re0 = 8900. It is shown that turbulent convective heat transfer characteristics of supercritical flow are significantly different from those of constant-property flow mainly due to … continued below

Creation Information

McEligot, D. M.; Bae, J. H.; Yoo, J. Y.; Choi, H. & Wolf, James R. October 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 22 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Influence of strongly-varying properties of supercritical-pressure fluids on turbulent convective heat transfer is investigated using direct numerical simulation. We consider thermally-developing upward flows in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. CO2 is chosen as the working fluid at a pressure to 8 Mpa, and the inlet Reynolds number based on the channel hydraulic diameter and the bulk velocity is Re0 = 8900. It is shown that turbulent convective heat transfer characteristics of supercritical flow are significantly different from those of constant-property flow mainly due to spatial and temporal variations of fluid density. Non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force near the heated wall, while temporal density fluctuations change the transport characteristics of turbulent heat and momentum via the buoyancy production terms arising from the correlations such as p1u1x, p1u1r and p1h1. Among various turbulence statistics, the streamwise turbulent heat flux shows a very peculiar transitional behavior due to the buoyancy effect, changing both in sign and magnitude. Consequently, a non-monotonic temperature distribution is developed in the flow direction, causing severe impairment of heat transfer in supercritical flows.

Source

  • NuReTH-11,Avignon, France,10/02/2005,10/06/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-05-00568
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911126
  • Archival Resource Key: ark:/67531/metadc881303

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 4:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 22

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

McEligot, D. M.; Bae, J. H.; Yoo, J. Y.; Choi, H. & Wolf, James R. Influence of fluid-property variation on turbulent convective heat transfer in vertical annular channel flows., article, October 1, 2005; [Idaho Falls, Idaho]. (https://digital.library.unt.edu/ark:/67531/metadc881303/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen