Photoionizing Trapped Highly Charged Ions with Synchrotron Radiation

PDF Version Also Available for Download.

Description

Photoabsorption by highly charged ions plays an essential role in astrophysical plasmas. Diagnostics of photoionized plasmas surrounding binary systems rely heavily on precise identification of absorption lines and on the knowledge of their cross sections and widths. Novel experiments using an electron beam ion trap, FLASH EBIT, in combination with monochromatic synchrotron radiation allow us to investigate ions in charge states hitherto out of reach. Trapped ions can be prepared in any charge state at target densities sufficient to measure absorption cross sections below 0.1 Mb. The results benchmark state-of-the-art predictions of the transitions wavelengths, widths, and absolute cross sections. … continued below

Physical Description

PDF-file: 8 pages; size: 0.9 Mbytes

Creation Information

Crespo, J. R.; Simon, M.; Beilmann, C.; Rudolph, J.; Steinbruegge, R.; Eberle, S. et al. September 12, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Photoabsorption by highly charged ions plays an essential role in astrophysical plasmas. Diagnostics of photoionized plasmas surrounding binary systems rely heavily on precise identification of absorption lines and on the knowledge of their cross sections and widths. Novel experiments using an electron beam ion trap, FLASH EBIT, in combination with monochromatic synchrotron radiation allow us to investigate ions in charge states hitherto out of reach. Trapped ions can be prepared in any charge state at target densities sufficient to measure absorption cross sections below 0.1 Mb. The results benchmark state-of-the-art predictions of the transitions wavelengths, widths, and absolute cross sections. Recent high resolution results on Fe{sup 14+}, Fe{sup 15+}, and Ar{sup 12+} at photon energies up to 1 keV are presented.

Physical Description

PDF-file: 8 pages; size: 0.9 Mbytes

Source

  • Presented at: Atomic Processes in Plasmas, Belfast, United Kingdom, Jul 19 - Jul 22, 2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-PROC-499225
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 1030206
  • Archival Resource Key: ark:/67531/metadc845568

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 12, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 25, 2020, 1:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Crespo, J. R.; Simon, M.; Beilmann, C.; Rudolph, J.; Steinbruegge, R.; Eberle, S. et al. Photoionizing Trapped Highly Charged Ions with Synchrotron Radiation, article, September 12, 2011; Livermore, California. (https://digital.library.unt.edu/ark:/67531/metadc845568/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen