Center for Extended Magnetohydrodynamic Modeling (CEMM) University of Utah SAPP 2007 Final Status Report

PDF Version Also Available for Download.

Description

During the third and final period of this grant, our goal was to refine the algorithmic approaches used to detect and visualize magnetic islands and their corresponding null points within both the NIMROD and M3D data sets. We refined our geometric approach, which gave a greater confidence in the accuracy of the Poincareplots created. The final results are best demonstrated through Figures 2-6 attached to the report. Technical details this work was reported in both the Physics and Visualization communities. The algorithms used to analyze the magnetic field lines and detect magnetic islands have been packaged into a library and … continued below

Creation Information

Sanderson, Allen R. & Johnson, Christopher R. December 4, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 50 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

During the third and final period of this grant, our goal was to refine the algorithmic approaches used to detect and visualize magnetic islands and their corresponding null points within both the NIMROD and M3D data sets. We refined our geometric approach, which gave a greater confidence in the accuracy of the Poincareplots created. The final results are best demonstrated through Figures 2-6 attached to the report. Technical details this work was reported in both the Physics and Visualization communities. The algorithms used to analyze the magnetic field lines and detect magnetic islands have been packaged into a library and were used within the SCIRun Problem Solving Environment which is being used by members of the CEMM for visualization. In addition, the library interface was developed so that it could be used by both the NIMROD and M3D codes directly. Thus allowing the fusion scientist to perform this analysis while their simulations were actively running. The use of the library for analysis and visualization was not limited to just within the CEMM SciDAC. Other groups such as the SciDAC for the Simulation of Wave Interactions with Magnetohydrodynamics using Silo code have used the tools for the analysis of their simulations, Figure 1. Though the funding of this project had concluded there is still much work to be performed on this analysis. The techniques developed are fast and robust when not in the presence of chaos. Magnetic field lines that are near the separatrices where chaos is most often present can be difficult to analyze yet these are the field lines that are greatest interest. We believe that investigating and developing techniques based on time frequency analysis may hold some promise. Two other issues that need to be address is the ability to automatically search for the magnetic islands and the ability to track the development of the magnetic islands over time. Our initial effort into automatically searching for the islands did not prove as robust as hoped and required more effort than could be allocated. These areas as well as other issues related to 'orbit analysis' are of interest to many members within of each of the Fusion SciDAC Centers and should be the subject of continuing SAPs such as this one.

Notes

Final Report.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 4, 2007

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • July 12, 2019, 5:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 50

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sanderson, Allen R. & Johnson, Christopher R. Center for Extended Magnetohydrodynamic Modeling (CEMM) University of Utah SAPP 2007 Final Status Report, report, December 4, 2007; United States. (https://digital.library.unt.edu/ark:/67531/metadc841936/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen