Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

PDF Version Also Available for Download.

Description

We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

Physical Description

7 p.

Creation Information

Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P. & Branz, H. M. July 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

Physical Description

7 p.

Source

  • Presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), 19-24 June 2011, Seattle, Washington

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/CP-5200-50712
  • Grant Number: AC36-08GO28308
  • Office of Scientific & Technical Information Report Number: 1022407
  • Archival Resource Key: ark:/67531/metadc830991

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • April 6, 2017, 1:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P. & Branz, H. M. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint, article, July 1, 2011; Golden, Colorado. (https://digital.library.unt.edu/ark:/67531/metadc830991/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen