Nonphotochemical Hole-Burning Imaging Studies of in vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

PDF Version Also Available for Download.

Description

Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria … continued below

Physical Description

3552 Kilobytes pages

Creation Information

Walsh, Richard Joseph June 27, 2002.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Sponsor

Publisher

  • Ames Laboratory
    Publisher Info: Ames Lab., IA (United States)
    Place of Publication: Iowa

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (f{Delta}{mu}) were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that {Delta}{mu} values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is also presented. Trends observed for large populations of cells (5 x 10{sup 5} to 2 x 10{sup 6}) were concurrently observed for individual cells, with the carcinoma cell line burning at a faster average rate relative to the normal cell line.

Physical Description

3552 Kilobytes pages

Notes

OSTI as DE00804160

Source

  • Other Information: TH: Thesis (Ph.D.); Submitted to Iowa State Univ., Ames, IA (US)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: IS-T 1961
  • Grant Number: W-7405-Eng-82
  • Office of Scientific & Technical Information Report Number: 804160
  • Archival Resource Key: ark:/67531/metadc740977

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • June 27, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Nov. 12, 2015, 1:26 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Top Search Results

We found 42 places within this document that matched your search. View Now

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Walsh, Richard Joseph. Nonphotochemical Hole-Burning Imaging Studies of in vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye, thesis or dissertation, June 27, 2002; Iowa. (https://digital.library.unt.edu/ark:/67531/metadc740977/: accessed May 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen