Spontaneous and amplified radiation at the initial stage of a SASE FEL.

PDF Version Also Available for Download.

Description

At the initial stage of a self-amplified spontaneous emission (SASE) free-electron laser (FEL), spontaneous undulator radiation in certain experimental configurations can dominate the amplified signal over an extended undulator distance. In this paper they study both the spontaneous and the amplified radiation in the framework of the paraxial wave equation and determine the transition from the dominance of spontaneous emission to exponential amplification. They compare theoretical expectations with SASE simulation codes GINGER and GENESIS.

Physical Description

4 pages

Creation Information

Huang, Z. & Kim, K. J. November 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 41 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

At the initial stage of a self-amplified spontaneous emission (SASE) free-electron laser (FEL), spontaneous undulator radiation in certain experimental configurations can dominate the amplified signal over an extended undulator distance. In this paper they study both the spontaneous and the amplified radiation in the framework of the paraxial wave equation and determine the transition from the dominance of spontaneous emission to exponential amplification. They compare theoretical expectations with SASE simulation codes GINGER and GENESIS.

Physical Description

4 pages

Source

  • 24th International Free Electron Laser Conference and 9th FEL User Workshop (FEL 2002), Argonne, IL (US), 09/09/2002--09/13/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ASD/CP-107817
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 805259
  • Archival Resource Key: ark:/67531/metadc739963

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • June 5, 2020, 5:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 41

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Huang, Z. & Kim, K. J. Spontaneous and amplified radiation at the initial stage of a SASE FEL., article, November 1, 2002; Illinois. (https://digital.library.unt.edu/ark:/67531/metadc739963/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen