Large area low cost processing for CIS photovoltaics. Final technical report

PDF Version Also Available for Download.

Description

An ink coating method was developed for CIS absorber deposition. The technique involves four processing steps: (1) preparation of a Cu-In alloy powder, (2) preparation of an ink using this powder, (3) deposition of the ink on a substrate in the form of a precursor layer, and (4) selenization to convert the Cu-In precursor into a fused CIS film. Absorbers grown by this low-cost, large-area method were used in the fabrication of 10.5% efficient solar cells.

Physical Description

20 p.

Creation Information

Basol, B.; Norsworthy, G.; Leidholm, C.; Halani, A.; Roe, R. & Kapur, V. July 22, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An ink coating method was developed for CIS absorber deposition. The technique involves four processing steps: (1) preparation of a Cu-In alloy powder, (2) preparation of an ink using this powder, (3) deposition of the ink on a substrate in the form of a precursor layer, and (4) selenization to convert the Cu-In precursor into a fused CIS film. Absorbers grown by this low-cost, large-area method were used in the fabrication of 10.5% efficient solar cells.

Physical Description

20 p.

Notes

OSTI as DE00765116

Medium: P; Size: 20 pages

Source

  • Other Information: PBD: 22 Jul 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 22, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • July 2, 2019, 2:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Basol, B.; Norsworthy, G.; Leidholm, C.; Halani, A.; Roe, R. & Kapur, V. Large area low cost processing for CIS photovoltaics. Final technical report, report, July 22, 1999; United States. (https://digital.library.unt.edu/ark:/67531/metadc724873/: accessed July 15, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen