BAF(2) POST-DEPOSITION REACTION PROCESS FOR THICK YBCO FILMS.

PDF Version Also Available for Download.

Description

The basic processes of the so-called BaF{sub 2} process for the formation of YBa{sub 2}Cu{sub 3}O{sub 7}, YBCO, films as well as its advantages over the in situ formation processes are discussed in the previous chapter. The process and the properties of YBCO films by this process were also nicely described in earlier articles by R. Feenstra, et al. Here, we will discuss two pertinent subjects related to fabrication of technologically viable YBCO conductors using this process. These are (1) the growth of thick (>> 1 {micro}m) c-axis-oriented YBCO films and (2) their growth rates. Before the detail discussions of … continued below

Physical Description

12 pages

Creation Information

Suenaga, M.; Solovyov, V. F.; Wu, L.; Wiesmann, H. J. & Zhu, Y. July 12, 2001.

Context

This book is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 35 times. More information about this book can be viewed below.

Who

People and organizations associated with either the creation of this book or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this book. Follow the links below to find similar items on the Digital Library.

Description

The basic processes of the so-called BaF{sub 2} process for the formation of YBa{sub 2}Cu{sub 3}O{sub 7}, YBCO, films as well as its advantages over the in situ formation processes are discussed in the previous chapter. The process and the properties of YBCO films by this process were also nicely described in earlier articles by R. Feenstra, et al. Here, we will discuss two pertinent subjects related to fabrication of technologically viable YBCO conductors using this process. These are (1) the growth of thick (>> 1 {micro}m) c-axis-oriented YBCO films and (2) their growth rates. Before the detail discussions of these subjects are given, we first briefly discuss what geometrical structure a YBCO-coated conductor should be. Then, we will provide examples of simple arguments for how thick the YBCO films and how fast their growth rates need to be. Then, the discussions in the following two sections are devoted to: (1) the present understanding of the nucleation and the growth process for YBCO, and why it is so difficult to grow thick c-axis-oriented films (> 3 {micro}m), and (2) our present understanding of the YBCO growth-limiting mechanism and methods to increase the growth rates. The values of critical-current densities J{sub c} in these films are of primary importance for the applications,. and the above two subjects are intimately related to the control of J{sub c} of the films. In general, the lower the temperatures of the YBCO formation are the higher the values of J{sub c} of the films. Thus, the present discussion is limited to those films which are reacted at {approx}735 C. This is the lowest temperature at which c-axis-oriented YBCO films (1-3 {micro}m thick) are comfortably grown. It is also well known that the non-c-axis oriented YBCO platelets are extremely detrimental to the values of J{sub c} such that their effects on J{sub c} dwarf essentially all of other microstructural effects which control J{sub c}. Hence, the discussion given below is mainly focused on how to avoid the growth of these crystallites when the films are thick and/or the growth rates are high.

Physical Description

12 pages

Notes

INIS; Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (US); OSTI as DE00787624

Source

  • Other Information: PBD: 12 Jul 2001

Language

Item Type

Identifier

Unique identifying numbers for this book in the Digital Library or other systems.

  • Report No.: BNL--68426
  • Report No.: KC0201030
  • Grant Number: AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 787624
  • Archival Resource Key: ark:/67531/metadc724396

Collections

This book is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this book?

When

Dates and time periods associated with this book.

Creation Date

  • July 12, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Nov. 9, 2015, 4:53 p.m.

Usage Statistics

When was this book last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 35

Interact With This Book

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Suenaga, M.; Solovyov, V. F.; Wu, L.; Wiesmann, H. J. & Zhu, Y. BAF(2) POST-DEPOSITION REACTION PROCESS FOR THICK YBCO FILMS., book, July 12, 2001; Upton, New York. (https://digital.library.unt.edu/ark:/67531/metadc724396/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen