Cs, Sr, and Ba Sorption on Clays and Fe-Oxides

PDF Version Also Available for Download.

Description

Technical guidance for performance assessment (PA) of low-level radioactive waste (LLRW) sites is currently dependent upon experimental retardation factors (K{sub D}'s) to predict radionuclide transport. Accurate predictions of waste transport or retardation will require mechanistic models of radionuclide sorption so as to be applicable to a wide range of soil/groundwater environments. To that end, we have investigated Cs{sup +}, Sr{sup +}, and Ba{sup 2+} sorption on several clay and Fe-oxide minerals. Relative metal binding strengths for montmorillonite clay decrease from Ba{sup 2+} to Sr{sup +}, which is similar to that sorption trend noticed for kaolinite. Molecular dynamics simulations for kaolinite … continued below

Physical Description

8 p.

Creation Information

Anderson, H. L.; Brady, P. V.; Cygan, R. T.; Gruenhagen, S. E.; Nagy, K. L. & Westrich, H. R. June 16, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Technical guidance for performance assessment (PA) of low-level radioactive waste (LLRW) sites is currently dependent upon experimental retardation factors (K{sub D}'s) to predict radionuclide transport. Accurate predictions of waste transport or retardation will require mechanistic models of radionuclide sorption so as to be applicable to a wide range of soil/groundwater environments. To that end, we have investigated Cs{sup +}, Sr{sup +}, and Ba{sup 2+} sorption on several clay and Fe-oxide minerals. Relative metal binding strengths for montmorillonite clay decrease from Ba{sup 2+} to Sr{sup +}, which is similar to that sorption trend noticed for kaolinite. Molecular dynamics simulations for kaolinite suggest that Cs{sup +} is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. Sorption is thought to occur on similar sites for smectite clays, however, the basal plane residual charge and its increased basal plane exposure should have a greater influence on metal sorption. On the other hand, phase transformation kinetics (e.g., ferrihydrite to goethite) is a very important control of metal sorption and resorption for Fe-oxides/hydroxides. These results provide a basis for understanding and predicting metal sorption on complex soil minerals.

Physical Description

8 p.

Notes

INIS; OSTI as DE00007898

Medium: P; Size: 8 pages

Source

  • 19th U.S. DOE Low-Level Radioactive Waste Management Conference, Salt Lake City, UT (US), 11/10/1998--11/12/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-1515C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 7898
  • Archival Resource Key: ark:/67531/metadc715252

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 16, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • June 15, 2021, 5:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 21

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Anderson, H. L.; Brady, P. V.; Cygan, R. T.; Gruenhagen, S. E.; Nagy, K. L. & Westrich, H. R. Cs, Sr, and Ba Sorption on Clays and Fe-Oxides, article, June 16, 1999; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc715252/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen