Correlation Between MHD-Activity, Energetic Particle Behaviour and Anomalous Transport Phenomena in WENDELSTEIN 7-AS

PDF Version Also Available for Download.

Description

Energy and particle transport in W7-AS exhibits a resonance like dependence on the edge rotational transform (iota) as long as the magnetic shear is relatively weak (low beta, no significant net toroidal currents). MHD modes at resonant surfaces may cause enhanced radial transport depending on the magnitude and radial extent of the magnetic perturbations. In many cases discharges in W7-AS are very quiescent, or in case of mode activity, often no influence on energy and particle confinement is found. In the high beta regime ((beta) </= 1.8 %) shear is increased due to the effect of the Shafranov shift leading … continued below

Physical Description

6 p.

Creation Information

Weller, A.; Anton, M.; Geiger, J.; Goerner, C.; Jaenicke, R.; Konrad, C. et al. December 31, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Energy and particle transport in W7-AS exhibits a resonance like dependence on the edge rotational transform (iota) as long as the magnetic shear is relatively weak (low beta, no significant net toroidal currents). MHD modes at resonant surfaces may cause enhanced radial transport depending on the magnitude and radial extent of the magnetic perturbations. In many cases discharges in W7-AS are very quiescent, or in case of mode activity, often no influence on energy and particle confinement is found. In the high beta regime ((beta) </= 1.8 %) shear is increased due to the effect of the Shafranov shift leading to the formation of rational surfaces inside the plasma. Pressure driven mode activity appears at corresponding resonant surfaces. These modes could be resistive interchange instabilities since the respective stability criterion can be violated at least in the outer part of the plasma. Only around the highest beta values and in cases, where the magnetic well of the configuration was reduced, relaxations of the plasma energy are observed, indicating the vicinity of a soft beta limit. In most cases, however, the maximum achievable beta is determined by the available heating power.

Physical Description

6 p.

Notes

INIS; OSTI as DE98000128

Source

  • 24. EPS conference on controlled fusion and plasma physics, Berchtesgaden (Germany), 9-13 Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98000128
  • Report No.: CONF-9706131--21
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 629310
  • Archival Resource Key: ark:/67531/metadc696304

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • June 4, 2021, 1 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Weller, A.; Anton, M.; Geiger, J.; Goerner, C.; Jaenicke, R.; Konrad, C. et al. Correlation Between MHD-Activity, Energetic Particle Behaviour and Anomalous Transport Phenomena in WENDELSTEIN 7-AS, article, December 31, 1997; Tennessee. (https://digital.library.unt.edu/ark:/67531/metadc696304/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen