Hydrothermal interaction of Topopah Spring tuff with J-13 water as a function of temperature

PDF Version Also Available for Download.

Description

In support of the Nevada Nuclear Waste Storage Investigations Project experiments were conducted to study the hydrothermal interaction of rock and water representative of a potential repository in tuff. These experiments provided data relevant to near-field repository conditions that can be used to: assess the ability to use accelerated tests based on the SA/V (surface area/volume) parameter and temperature; allow the measurement of chemical changes in phases present in the tuff before reaction as well as the identification and chemical analysis of secondary phases resulting from hydrothermal reactions; and demonstrate the usefulness of geochemical modeling in a repository environment using … continued below

Physical Description

9 p.

Creation Information

Knauss, K. G.; Delany, J. M.; Beiriger, W. J. & Peifer, D. W. November 30, 1984.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In support of the Nevada Nuclear Waste Storage Investigations Project experiments were conducted to study the hydrothermal interaction of rock and water representative of a potential repository in tuff. These experiments provided data relevant to near-field repository conditions that can be used to: assess the ability to use accelerated tests based on the SA/V (surface area/volume) parameter and temperature; allow the measurement of chemical changes in phases present in the tuff before reaction as well as the identification and chemical analysis of secondary phases resulting from hydrothermal reactions; and demonstrate the usefulness of geochemical modeling in a repository environment using the EQ3/6 thermodynamic/kinetic geochemical modeling code. Crushed tuff and polished wafers of tuff were reacted with a natural ground water in Dickson-type gold-cell rocking autoclaves which were periodically sampled under in-situ conditions. Results were compared with predictions based on the EQ3/6 geochemical modeling code. Eight short-term experiments (2 to 3 months) at 150{sup 0}C and 250{sup 0}C have been completed using tuff from both drillcore and outcrop. Long-term experiments at 90{sup 0}C and 150{sup 0}C using drillcore polished wafers are in progress. This paper will focus on the results of the 150{sup 0}C and 250{sup 0}C experiments using drill core polished wafers. 11 references, 4 figures.

Physical Description

9 p.

Notes

NTIS, PC A02/MF A01; OSTI as DE85004412

Source

  • Materials Research Society annual meeting, Boston, MA (United States), 26-29 Nov 1984

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 30, 1984

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • July 3, 2020, 4:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Knauss, K. G.; Delany, J. M.; Beiriger, W. J. & Peifer, D. W. Hydrothermal interaction of Topopah Spring tuff with J-13 water as a function of temperature, report, November 30, 1984; California. (https://digital.library.unt.edu/ark:/67531/metadc693043/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen