Fabrication and characterization of Ag-clad Bi-2223 tapes.

PDF Version Also Available for Download.

Description

The powder-in-tube (PIT) technique was used to fabricate multifilament (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes. Transport current properties of these tapes were enhanced by increasing the packing density of the precursor powder and improving the mechanical deformation condition. A critical current (I{sub c}) of > 35 A in long lengths (> 200 m) tapes has been achieved. In measuring the dependence of critical current density on magnetic field and temperature for the optimally processed tapes, we found a J{sub c} of > 10{sup 4} A/cm{sup 2} at 20 K in magnetic fields up to 3 T and … continued below

Physical Description

15 p.

Creation Information

Balachandran, U. April 20, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The powder-in-tube (PIT) technique was used to fabricate multifilament (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes. Transport current properties of these tapes were enhanced by increasing the packing density of the precursor powder and improving the mechanical deformation condition. A critical current (I{sub c}) of > 35 A in long lengths (> 200 m) tapes has been achieved. In measuring the dependence of critical current density on magnetic field and temperature for the optimally processed tapes, we found a J{sub c} of > 10{sup 4} A/cm{sup 2} at 20 K in magnetic fields up to 3 T and parallel to the c-axis, which is of interest for use in refrigerator-cooled magnets. I{sub c} declined exponentially when an external field was applied perpendicular to the tape surface at 77 K. Mechanical stability was tested for tapes sheathed with pure Ag and Ag-Mg alloy. Tapes made with pure Ag sheathing can withstand a tensile stress of {approx}20 MPa with no detrimental effect on I{sub c} values. Mechanical performance was improved by using Ag-Mg alloy sheathing: values of transport critical current began to decrease at the tensile stress of {approx} 100 MPa. Transport current measurements on tapes wound on a mandrel of 3.81 cm (1.5 in.) diameter at 30{degree} to the longitudinal axis, showed a reduction of {approx} 10% in I{sub c} values for pure Ag-sheathed tapes and 5% reduction in I{sub c} values for Ag-Mg sheathed tapes, compared with the I{sub c} values of as-coiled tapes.

Physical Description

15 p.

Notes

OSTI as DE00011188

Medium: P; Size: 15 pages

Source

  • 101st Annual Meeting of American Ceramic Society, Indianapolis, IN (US), 04/22/1998--04/24/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-98001
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11188
  • Archival Resource Key: ark:/67531/metadc620074

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 20, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 2:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Balachandran, U. Fabrication and characterization of Ag-clad Bi-2223 tapes., article, April 20, 1999; Illinois. (https://digital.library.unt.edu/ark:/67531/metadc620074/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen