Impaired virulence factor production in a dihydroorotate dehydrogenase mutant (pyrD) of Pseudomonas aeruginosa.

PDF Version Also Available for Download.

Description

Previous research in our laboratory showed that when knockout mutations were created in the pyrB and pyrC genes of the pyrimidine pathway in Pseudomonas aeruginosa, not only were the resultant mutants auxotrophic for pyrimidines but they were also impaired in virulence factor production. Such a correlation had not been previously reported for P. aeruginosa, a ubiquitous opportunistic pathogen in humans. In an earlier study it was reported that mutants blocked in one of the first three enzymes of the pyrimidine pathway in the non-pathogenic strain P. putida M produced no pyoverdin pigment while mutants blocked in the later steps produced … continued below

Creation Information

Ralli, Pooja December 2005.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 1731 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Ralli, Pooja

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Description

Previous research in our laboratory showed that when knockout mutations were created in the pyrB and pyrC genes of the pyrimidine pathway in Pseudomonas aeruginosa, not only were the resultant mutants auxotrophic for pyrimidines but they were also impaired in virulence factor production. Such a correlation had not been previously reported for P. aeruginosa, a ubiquitous opportunistic pathogen in humans. In an earlier study it was reported that mutants blocked in one of the first three enzymes of the pyrimidine pathway in the non-pathogenic strain P. putida M produced no pyoverdin pigment while mutants blocked in the later steps produced copious amounts of pigment, just like the wild type. This study probed for the same connection between pyrimidine auxotrophy and pigment production applied in P. aeruginosa. To that end a knockout mutation was created in pyrD, the fourth step in the pyrimidine pathway which encodes dihydroorotate dehydrogenase. The resulting mutant required pyrimidines for growth but produced wild type pigment levels. Since the pigment pyoverdin is a siderophore it may also be considered a virulence factor, other virulence factors were quantified in the mutant. These included casein protease, hemolysin, elastase, swimming, swarming and twitching motility, and iron binding capacity. In all cases these virulence factors were significantly decreased in the mutant. Even supplementing with uracil did not attain wild type levels. Starvation of the pyrimidine mutant for uracil caused increased specific activity of the pyrimidine enzymes, suggesting that regulation of the pyrimidine pathway occurred at the level of transcription. This effect has also been reported for P. oleovorans. The present research consolidates the idea that pyrimidine auxotrophs cause decreased pathogenicity in P. aeruginosa. Such a finding may open the search for chemotherapy targets in cystic fibrosis and burn victims where P. aeruginosa is an infecting agent.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2005

Added to The UNT Digital Library

  • Feb. 15, 2008, 4:30 p.m.

Description Last Updated

  • March 3, 2008, 12:05 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 1,731

Interact With This Dissertation

Here are some suggestions for what to do next.

Top Search Results

We found two places within this dissertation that matched your search. View Now

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ralli, Pooja. Impaired virulence factor production in a dihydroorotate dehydrogenase mutant (pyrD) of Pseudomonas aeruginosa., dissertation, December 2005; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc4940/: accessed June 6, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen