Simulation of Spheromak Evolution and Energy Confinement

PDF Version Also Available for Download.

Description

Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been … continued below

Physical Description

PDF-FILE: 30 ; SIZE: 1.9 MBYTES pages

Creation Information

Cohen, B; Hooper, E; Cohen, R; Hill, D; McLean, H; Wood, R et al. November 9, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the geometry of the experiment (plasma gun and flux conserver), the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations are providing a better understanding of the dominant physics in SSPX, including when the flux surfaces close and the mechanisms limiting the efficiency of electrostatic drive.

Physical Description

PDF-FILE: 30 ; SIZE: 1.9 MBYTES pages

Source

  • Presented at: 46th Annual Meeting of the Division of Plasma Physics, Savannah, GA (US), 11/13/2004--11/19/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-207873
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 15011410
  • Archival Resource Key: ark:/67531/metadc1404899

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 9, 2004

Added to The UNT Digital Library

  • Jan. 23, 2019, 12:54 p.m.

Description Last Updated

  • Feb. 8, 2019, 6:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cohen, B; Hooper, E; Cohen, R; Hill, D; McLean, H; Wood, R et al. Simulation of Spheromak Evolution and Energy Confinement, article, November 9, 2004; Livermore, California. (https://digital.library.unt.edu/ark:/67531/metadc1404899/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen