Muon spin relaxation studies of heavy fermion superconductors

PDF Version Also Available for Download.

Description

This talk will focus recent developments in our understanding of heavy fermion (HF) superconductors and the role that positive muon spin relaxation ({mu}SR) studies have played in helping to elucidate their properties. As illustrations two systems will be discussed: (1) UPd{sub 2}Al{sub 3}, one of the most recently discovered HF superconductors, which also displays coexisting magnetic order and (2) UBe{sub 3} doped with small quantities Of Th substituted for U, which displays an interplay between its superconducting and magnetic ground states, leading to multiple superconducting states.

Physical Description

7 p.

Creation Information

Heffner, R. H. June 1, 1993.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This talk will focus recent developments in our understanding of heavy fermion (HF) superconductors and the role that positive muon spin relaxation ({mu}SR) studies have played in helping to elucidate their properties. As illustrations two systems will be discussed: (1) UPd{sub 2}Al{sub 3}, one of the most recently discovered HF superconductors, which also displays coexisting magnetic order and (2) UBe{sub 3} doped with small quantities Of Th substituted for U, which displays an interplay between its superconducting and magnetic ground states, leading to multiple superconducting states.

Physical Description

7 p.

Notes

OSTI; NTIS; INIS; GPO Dep.

Source

  • International workshop on low energy muon science (LEMS `93),Santa Fe, NM (United States),4-8 Apr 1993

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE93014576
  • Report No.: LA-UR--93-1736
  • Report No.: CONF-9304145--2
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 10161608
  • Archival Resource Key: ark:/67531/metadc1384878

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1993

Added to The UNT Digital Library

  • Nov. 28, 2018, 2:33 p.m.

Description Last Updated

  • Dec. 7, 2018, 3:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Heffner, R. H. Muon spin relaxation studies of heavy fermion superconductors, article, June 1, 1993; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1384878/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen