Superconducting submillimeter and millimeter wave detectors

PDF Version Also Available for Download.

Description

The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-{Tc} microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} films was subsequently measured and provided direct evidence for the bolometric response of high-{Tc} films to fast (ns) laser pulses. The low-{Tc} microbolometer was developed and used to make the first direct measurements of the frequency … continued below

Physical Description

133 p.

Creation Information

Nahum, M. October 20, 1992.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-{Tc} microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} films was subsequently measured and provided direct evidence for the bolometric response of high-{Tc} films to fast (ns) laser pulses. The low-{Tc} microbolometer was developed and used to make the first direct measurements of the frequency dependent optical efficiency of planar lithographed antennas. The hot-electron microbolometer was invented less than a year prior to the writing of this dissertation. Our analysis, presented here, indicates that it should be possible to attain up to two orders of magnitude higher sensitivity than that of the best available direct detectors when operated at the same temperature. The temperature readout scheme for this device could also be used to measure the intrinsic interaction between electrons and phonons in a metal with a sensitivity that is five orders of magnitude better than in previous measurements. Preliminary measurements of quasiparticle trapping effects at the interface between a metal and a superconductor are also presented.

Physical Description

133 p.

Notes

OSTI; NTIS; GPO Dep.

Source

  • Other Information: TH: Thesis (Ph.D.)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Other: DE93007656
  • Report No.: LBL--33039
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 10133563
  • Archival Resource Key: ark:/67531/metadc1311365

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • October 20, 1992

Added to The UNT Digital Library

  • Nov. 3, 2018, 11:47 a.m.

Description Last Updated

  • Nov. 12, 2018, 1:07 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nahum, M. Superconducting submillimeter and millimeter wave detectors, thesis or dissertation, October 20, 1992; California. (https://digital.library.unt.edu/ark:/67531/metadc1311365/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen