Performance assessment of the Greater Confinement Disposal facility on the Nevada Test Site: Comparing the performance of two conceptual site models

PDF Version Also Available for Download.

Description

A small amount of transuranic (TRU) waste has been disposed of at the Greater Confinement Disposal (GCD) site located on the Nevada Test Site`s (NTS) Radioactive Waste Management Site (RWMS). The waste has been buried in several deep (37 m) boreholes dug into the floor of an alluvial basin. For the waste to remain in its current configuration, the DOE must demonstrate compliance of the site with the TRU disposal requirements, 40 CFR 191. Sandia`s approach to process modelling in performance assessment is to use demonstrably conservative models of the site. Choosing the most conservative model, however, can be uncertain. … continued below

Physical Description

11 p.

Creation Information

Baer, T. A.; Price, L. L. & Gallegos, D. P. December 31, 1993.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A small amount of transuranic (TRU) waste has been disposed of at the Greater Confinement Disposal (GCD) site located on the Nevada Test Site`s (NTS) Radioactive Waste Management Site (RWMS). The waste has been buried in several deep (37 m) boreholes dug into the floor of an alluvial basin. For the waste to remain in its current configuration, the DOE must demonstrate compliance of the site with the TRU disposal requirements, 40 CFR 191. Sandia`s approach to process modelling in performance assessment is to use demonstrably conservative models of the site. Choosing the most conservative model, however, can be uncertain. As an example, diffusion of contaminants upward from the buried waste in the vadose zone water is the primary mechanism of release. This process can be modelled as straight upward planar diffusion or as spherical diffusion in all directions. The former has high fluxes but low release areas, the latter has lower fluxes but is spread over a greater area. We have developed analytic solutions to a simple test problem for both models and compared the total integrated discharges. The spherical diffusion conceptual model results in at least five times greater release to the accessible environment than the planar model at all diffusivities. Modifying the planar model to allow for a larger release, however, compensated for the smaller original planar discharge and resulted in a new planar model that was more conservative that the spherical model except at low diffusivities.

Physical Description

11 p.

Notes

INIS; OSTI as DE94006195; Paper copy available at OSTI: phone, 865-576-8401, or email, reports@adonis.osti.gov

Source

  • Waste management `94: working towards a cleaner environment,Tucson, AZ (United States),27 Feb - 3 Mar 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE94006195
  • Report No.: SAND--93-2174C
  • Report No.: CONF-940225--1
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 10119600
  • Archival Resource Key: ark:/67531/metadc1276748

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1993

Added to The UNT Digital Library

  • Oct. 12, 2018, 6:44 a.m.

Description Last Updated

  • Nov. 15, 2018, 2:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Baer, T. A.; Price, L. L. & Gallegos, D. P. Performance assessment of the Greater Confinement Disposal facility on the Nevada Test Site: Comparing the performance of two conceptual site models, article, December 31, 1993; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1276748/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen