Simulation of Dengue Outbreak in Thailand

PDF Version Also Available for Download.

Description

The dengue virus has become widespread worldwide in recent decades. It has no specific treatment and affects more than 40% of the entire population in the world. In Thailand, dengue has been a health concern for more than half a century. The highest number of cases in one year was 174,285 in 1987, leading to 1,007 deaths. In the present day, dengue is distributed throughout the entire country. Therefore, dengue has become a major challenge for public health in terms of both prevention and control of outbreaks. Different methodologies and ways of dealing with dengue outbreaks have been put forward … continued below

Physical Description

viii, 94 pages

Creation Information

Meesumrarn, Thiraphat August 2018.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 57 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Meesumrarn, Thiraphat

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The dengue virus has become widespread worldwide in recent decades. It has no specific treatment and affects more than 40% of the entire population in the world. In Thailand, dengue has been a health concern for more than half a century. The highest number of cases in one year was 174,285 in 1987, leading to 1,007 deaths. In the present day, dengue is distributed throughout the entire country. Therefore, dengue has become a major challenge for public health in terms of both prevention and control of outbreaks. Different methodologies and ways of dealing with dengue outbreaks have been put forward by researchers. Computational models and simulations play an important role, as they have the ability to help researchers and officers in public health gain a greater understanding of the virus's epidemic activities.
In this context, this dissertation presents a new framework, Modified Agent-Based Modeling (mABM), a hybrid platform between a mathematical model and a computational model, to simulate a dengue outbreak in human and mosquito populations. This framework improves on the realism of former models by utilizing the reported data from several Thai government organizations, such as the Thai Ministry of Public Health (MoPH), the National Statistical Office, and others. Additionally, its implementation takes into account the geography of Thailand, as well as synthetic mosquito and synthetic human populations. mABM can be used to represent human behavior in a large population across variant distances by specifying demographic factors and assigning mobility patterns for weekdays, weekends, and holidays for the synthetic human population. The mosquito dynamic population model (MDP), which is a component of the mABM framework, is used for representing the synthetic mosquito population dynamic and their ecology by integrating the regional model to capture the effect of dengue outbreak. The two synthetic populations can be linked to each other for the purpose of presenting their interactions, and the Local Stochastic Contact Model for Dengue (LSCM-DEN) is utilized. For validation, the number of cases from the experiment is compared to reported cases from the Thailand Vector Borne Disease Bureau for the selected years.
This framework facilitates model configuration for sensitivity analysis by changing parameters, such as travel routes and seasonal temperatures. The effects of these parameters were studied and analyzed for an improved understanding of dengue outbreak dynamics.

Physical Description

viii, 94 pages

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2018

Added to The UNT Digital Library

  • Sept. 26, 2018, 6:16 p.m.

Description Last Updated

  • Aug. 26, 2021, 2:51 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 57

Where

Geographical information about where this dissertation originated or about its content.

Place Name

Publication Place

Map Information

  • map marker Place Name coordinates. (May be approximate.)
  • Repositioning map may be required for optimal printing.

Mapped Locations

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Meesumrarn, Thiraphat. Simulation of Dengue Outbreak in Thailand, dissertation, August 2018; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1248484/: accessed July 18, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen