The thermodynamic properties of 2-aminobiphenyl (an intermediate in the carbazole/hydrogen reaction network)

PDF Version Also Available for Download.

Description

Catalytic hydrodenitrogenation (HDN) is a key step in upgrading processes for conversion of heavy petroleum, shale oil, tar sands, and the products of the liquefaction of coal to economically viable products. This research program provides accurate experimental thermochemical and thermophysical properties for key organic nitrogen-containing compounds present in the range of alternative feedstocks, and applies the experimental information to thermodynamic analyses of key HDN reaction networks. This report is the first in a series that will lead to an analysis of a three-ring HDN system; the carbazole/hydrogen reaction network. 2-Aminobiphenyl is the initial intermediate in the HDN pathway for carbazole, … continued below

Physical Description

57 p.

Creation Information

Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E. & Nguyen, A. December 1, 1990.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Catalytic hydrodenitrogenation (HDN) is a key step in upgrading processes for conversion of heavy petroleum, shale oil, tar sands, and the products of the liquefaction of coal to economically viable products. This research program provides accurate experimental thermochemical and thermophysical properties for key organic nitrogen-containing compounds present in the range of alternative feedstocks, and applies the experimental information to thermodynamic analyses of key HDN reaction networks. This report is the first in a series that will lead to an analysis of a three-ring HDN system; the carbazole/hydrogen reaction network. 2-Aminobiphenyl is the initial intermediate in the HDN pathway for carbazole, which consumes the least hydrogen possible. Measurements leading to the calculation of the ideal-gas thermodynamic properties for 2-aminobiphenyl are reported. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclined-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for selected temperatures between 298.15 K and 820 K. The critical temperature and critical density were determined for 2-aminobiphenyl with the d.s.c., and the critical pressure was derived. The Gibbs energies of formation are used in thermodynamic calculations to compare the feasibility of the initial hydrogenolysis step in the carbazole/H{sub 2} network with that of its hydrocarbon and oxygen-containing analogous; i.e., fluorene/H{sub 2} and dibenzofuran/H{sub 2}. Results of the thermodynamic calculations are compared with those of batch-reaction studies reported in the literature. 57 refs., 8 figs., 18 tabs.

Physical Description

57 p.

Notes

OSTI; NTIS; GPO Dep.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 1990

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Dec. 17, 2020, midnight

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E. & Nguyen, A. The thermodynamic properties of 2-aminobiphenyl (an intermediate in the carbazole/hydrogen reaction network), report, December 1, 1990; Bartlesville, Oklahoma. (https://digital.library.unt.edu/ark:/67531/metadc1210801/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen